Существуют такие системы отсчета относительно которых поступательно движущееся тело сохраняет свою
Как сказал.
Наблюдай внимательно за природой, и ты будешь всё понимать намного лучше.
Альберт Эйнштейн
Вопросы к экзамену
Для всех групп технического профиля
Список лекций по физике за 1,2 семестр
Я учу детей тому, как надо учиться
Часто сталкиваюсь с тем, что дети не верят в то, что могут учиться и научиться, считают, что учиться очень трудно.
Первый закон Ньютона (закон инерции)
Другие формулировки первого закона Ньютона:
1) Если на тело не действует внешняя сила, то тело находится в состоянии покоя или равномерного прямолинейного движения.
2) Материальная точка сохраняет состояние покоя или равномерного движения до тех пор, пока внешние воздействия не изменят этого состояния.
Системы отсчета, в которых выполняется Первый закон Ньютона, называются инерциальными системами отсчета. Все системы отсчета, движущиеся прямолинейно и равномерно относительно данной инерциальной системы отсчета, тоже являются инерциальными.
Инертность — это свойство тел сохранять свою скорость неизменной, если на него не действуют другие тела или их действие скомпенсировано. Если тело при этом движется, то говорят, что оно движется по инерции.
Инерцией называют явление сохранения скорости движения тела при отсутствии внешних воздействий или при их компенсации.
Первый закон Ньютона – закон инерции.
Условия инерции:
а) если действия нет ( R=0 ) – покой, v=0 ;
б) если действия скомпенсированы ( R=0 ) – движение равномерное прямолинейное ( v=const )
Как сказал.
Все мы гении. Но если вы будете судить рыбу по её способности взбираться на дерево, она проживёт всю жизнь, считая себя дурой.
Альберт Эйнштейн
Вопросы к экзамену
Для всех групп технического профиля
Список лекций по физике за 1,2 семестр
Я учу детей тому, как надо учиться
Часто сталкиваюсь с тем, что дети не верят в то, что могут учиться и научиться, считают, что учиться очень трудно.
Вопрос 6.
Законы Ньютона
Краткий ответ
Основу динамики составляют три закона Ньютона:
Второй закон Ньютона — Ускорение тела пропорционально силе, действующей на тело и обратнопропорционально массе этого тела.
— Сила действующая на тело
— Масса тела
— Ускорение тела
— Сила действующая на 2 предмет
— Сила действующая на 1 предмет
— действуют вдоль одной прямой;
— направлены в противоположные стороны;
— равны по величине;
— приложены к разным телам, поэтому не уравновешивают друг друга;
— одинаковой природы.
Развернутый ответ
Основу динамики составляют три закона Ньютона, которые справедливы для макроскопических тел, скорость движения которых много меньше скорости движения света в вакууме. Существует несколько формулировок каждого из законов. Все они являются верными.
Первый закон Ньютона – закон инерции.
Инерцией называют явление сохранения скорости движения тела при отсутствии внешних воздействий или при их компенсации.
Условия инерции:
а) если действия нет (R=0) – покой, v=0;
б) если действия скомпенсированы (R=0) – движение равномерное прямолинейное (v=const)
Системы отсчета, в которых выполняется первый закон Ньютона, называются инерциальными системами отсчета. Все системы отсчета, движущиеся прямолинейно и равномерно относительно данной инерциальной системы отсчета, тоже являются инерциальными.
1) Второй закон Ньютона — Ускорение тела пропорционально силе, действующей на тело и обратнопропорционально массе этого тела.
— Сила действующая на тело
— Масса тела
— Ускорение тела
2) Второй закон Ньютона — Сила, действующая на тело, равна произведению массы тела на сообщаемое этой силой ускорение
Закон справедлив для любых сил
Из второго закона Ньютона следует :
— приложенная к телу сила определяет его ускорение;
— сила – причина изменения движения (скорости);
Ускорение, приобретаемое материальной точкой в инерциальной системе отсчета:
— прямо пропорционально действующей на точку силе;
— обратно пропорционально массе точки;
— направление ускорения всегда совпадает с направлением силы;
Если на тело одновременно действуют несколько сил (например,F1,F2 и F3) то под силой в формуле, выражающей второй закон Ньютона, нужно понимать равнодействующую всех сил: F=F1+F2+F3
— Сила действующая на 2 предмет
— Сила действующая на 1 предмет
— действуют вдоль одной прямой;
— направлены в противоположные стороны;
— равны по величине;
— приложены к разным телам, поэтому не уравновешивают друг друга;
— одинаковой природы.
На картинке показан как действует третий закон Ньютона. Человек воздействует на груз с такой же по модулю силой, с какой груз действует на человека. Эти силы направлены в противоположные стороны. Они имеют одну и ту же физическую природу – это упругие силы каната. Сообщаемые обоим телам ускорения обратно пропорциональны массам тел.
Третий закон выполняется во всех случаях при взаимодействии тел.
Силы взаимодействия имеют одинаковую природу.
Законы движения Ньютона устанавливают, утверждают, показывают:
Законы Ньютона. Динамика.
теория по физике 🧲 динамика
Три закона Ньютона
Динамика — раздел механики, изучающий причины движения тел и способы определения их ускорения. В нем движение тел описывается с учетом их взаимодействия.
Большой вклад в развитие динамики внес английский ученый Исаак Ньютон. Он первым смог выделить законы движения, которым подчиняются все макроскопические тела. Эти законы называют законами Ньютона, законами механики, законами динамики или законами движения тел.
Внимание! Законы Ньютона нельзя применять к произвольным телам. Они применимы только к точке, обладающей массой — к материальной точке.
Основное утверждение механики
Для описания движения тела можно взять любую систему отсчета. Обычно для этого используется система отсчета, связанная с Землей. Если какое-то тело меняет свою скорость, рядом с ним всегда можно обнаружить другое тело, которое на него действует. Так, если поднять камень и отпустить, он не останется висеть в воздухе, а упадет вниз. Следовательно, на него что-то подействовало. В данном случае сама Земля притянула камень к себе. Отсюда следует основное утверждение механики:
Основное утверждение механики
Изменение скорости (ускорение) тела всегда вызывается воздействием на него других тел.
Согласно утверждению, если на тело не действуют никакие силы, его ускорение будет нулевым, и оно будет либо покоиться, либо двигаться равномерно и прямолинейно (с постоянной скоростью).
Но в нашем мире мы не всегда это наблюдаем. И этому есть объяснение. Если тело покоится, оно действительно не меняет свою скорость. Так, мяч лежит на траве до тех пор, пока его не пнут. После того, как его пнут, он начинает катиться, но затем останавливается. Пока мяч катится, к нему больше не прикасаются. Казалось бы, согласно основному утверждению механики, мяч должен катиться вечно. Но этого не происходит, потому что на мяч действует сила трения, возникающая между его поверхностью и травой.
Основное утверждение механики можно проиллюстрировать в открытом космосе в месте, где сила притяжения космических тел пренебрежимо мала. Если в космосе придать телу скорость и отпустить, оно будет двигаться с такой скоростью по прямой линии до тех пор, пока на него не подействуют другие силы. Ярким примером служат межгалактические звезды, или звезды-изгои. Гравитационно они не связаны ни с одной из галактик, а потому движутся с постоянной скоростью. Так, звезда HE 0437-5439 удаляется от нашей галактики с постоянной скоростью 723 км/с.
Свободное тело — тело, на которое не действуют другие тела. Свободное тело либо покоится, либо движется прямолинейно и равномерно.
Первый закон Ньютона
Исаак Ньютон, изучая движение тел, заметил, что относительно одних систем отсчета свободные тела сохраняют свою скорость, а относительно других — нет. Он разделил их на две большие группы: инерциальные системы отсчета и неинерциальные. В этом кроется первый закон динамики.
Первый закон Ньютона
Существуют такие системы отсчета, называемые инерциальными, относительно которых тела движутся равномерно и прямолинейно или находятся в состоянии покоя, если на них не действуют другие тела или их действие компенсировано.
Примером инерциальной системы отсчета служит система отсчета, связанная с Землей (геоцентрическая). Другой пример — гелиоцентрическая система отсчета (связанная с Солнцем).
Неинерциальная система отсчета — система отсчета, в которой тела могут менять свою скорость при отсутствии на них действия других тел.
Примером неинерциальной системы отсчета служит автобус. Когда он движется равномерно и прямолинейно, стоящие внутри пассажиры находятся относительно него в состоянии покоя. Но когда автобус останавливается, пассажиры падают вперед, т. е. меняют свою скорость, хотя на них не действуют другие тела.
Второй закон Ньютона
В примере с автобусом видно, что пассажиры стараются сохранить свою скорость относительно Земли — инерциальной системы отсчета. Такое явление называется инерцией.
Инерция — явление, при котором тело сохраняет состояние покоя или равномерного прямолинейного движения.
Инертность — физическое свойство, заключающееся в том, что любое тело оказывает сопротивление изменению его скорости (как по модулю, так и по направлению).
Не все тела одинаково инертны. Вы можете взять мячик и придать ему большое ускорение. Но вы не можете придать такое же ускорение гире, хотя она обладает похожим размером. Но мячик и гиря различаются между собой массой.
Масса — скалярная физическая величина, являющаяся мерой инертности тела. Чем больше масса, тем больше инертность тела.
Масса обозначается буквой m. Единица измерения массы — кг. Прибор для измерения массы — весы.
Чтобы придать одинаковую скорость двум телам с разной инертностью, к телу с большей инертностью придется приложить больше силы. Попробуйте сдвинуть с места стол, а затем — шкаф. Сдвинуть с места стол будет проще.
Если же приложить две одинаковые силы к телам с разной инертностью, будет видно, что тело с меньшей инертностью получает большее ускорение. Если приставить к пружине теннисный шарик, а затем сжать ее и резко отпустить, шарик улетит далеко. Если вместо теннисного шарика взять железный, он лишь откатится на некоторое расстояние.
Описанные выше примеры показывают, что между силой, прикладываемой к телу, и ускорением, которое оно получает в результате прикладывания этой силы, и массой этого тела есть взаимосвязь. Она раскрывается во втором законе Ньютона.
Второй закон Ньютона
Сила, действующая на тело, равна произведению массы этого тела на ускорение, которое сообщает эта сила.
где F — сила, которую прикладывают к телу, a — ускорение, которое сообщает эта сила, m — масса тела
Сила — количественная мера действия тел друг на друга, в результате которого тела получают ускорения.
Сначала переведем массу яблока в кг. 200 г = 0,2 кг. Теперь найдем силу, действующую на яблоко со стороны Земли, по второму закону Ньютона:
F = ma = 0,2 ∙ 9,8 = 1,96 (Н)
Равнодействующая сила
Иногда на тело действуют несколько сил. Тогда при описании его движения вводится понятие равнодействующей силы.
Равнодействующая сила — векторная сумма всех сил, действующих на тело одновременно.
В этом случае второй закон Ньютона формулируется так:
Второй закон Ньютона через равнодействующие силы
Если на тело действует несколько сил, но их равнодействующая R будет равна произведению массы на ускорение этого тела.
Правила сложения сил и их проекций
Сложение двух сил, направленных вдоль одной прямой в одну сторону
Равнодействующая сила сонаправлена с обеими силами.
Сложение двух сил, направленных вдоль одной прямой во взаимно противоположных направлениях
Равнодействующая сила направлена в сторону направления большей по модулю силы.
Сложение двух сил, перпендикулярных друг к другу
Сложение двух сил, расположенных под углом α друг к другу
Сложение трех сил
Сложение проекций сил
Проекция на ось OY:
Третий закон Ньютона
Когда одно тело действует на другое, начинается взаимодействие этих тел. Это значит, если тело А действует на тело В и сообщает ему ускорение, то и тело В действует на тело А, тоже придавая ему ускорение. К примеру, если сжать пружину руками, то руки будут чувствовать сопротивление, оказываемое силой упругости пружины. Если же, находясь в лодке, начать тянуть за веревку вторую лодку, то обе лодки будут двигаться навстречу друг другу. То есть, вы, находясь в своей лодке, тоже будете двигаться навстречу второй лодке.
Иногда на тело действует сразу несколько сил, но тело продолжает покоиться. В этом случае говорят, что силы друг друга компенсируют, то есть их равнодействующая равна нулю.
Две силы независимо от их природы считаются равными по модулю и противоположно направленными, если их одновременное действие на тело не меняет его скорости.
Примером такого явления служит ситуация, когда при перетягивании каната его никто не может перетянуть в свою сторону. Если взять два каната и присоединить между ними два динамометра, а затем начать игру в перетягивание, выяснится, что показания динамометра всегда будут одинаковыми. Это значит, что независимо от масс и придаваемых ускорений два взаимодействующих тела оказывают друг на друга равные по модулю силы. В этом заключается смысл третьего закона Ньютона.
Силы, с которыми тела действуют друг на друга, равны по модулям и направлены по одной прямой в противоположные стороны.
Используя второй закон Ньютона, третий закон механики можно переписать иначе:
Отношение модулей ускорений a 1 и a 2 взаимодействующих друг с другом тел определяется обратным отношением их масс и совершенно не зависит от характера действующих между ними сил.
Согласно третьему закону Ньютона модули сил, с которыми взаимодействуют Земли и яблоко, равны. Поэтому:
Пусть тело 1 будет яблоко, а тело 2 — Земля. Тогда a1 будет равно g. Отсюда ускорение, с которым движется Земля к падающему на нее яблоку, равна:
Скорость тела массой 5 кг, движущегося вдоль оси Ох в инерциальной системе отсчёта, изменяется со временем в соответствии с графиком (см. рисунок). Равнодействующая приложенных к телу сил в момент времени t=2,5 с равна…
Сила. Первый закон Ньютона
СИЛА.
Сила – векторная физическая величина, являющаяся мерой взаимодействия тел. Обозначение: .
Существует 4 основных типа взаимодействия: гравитационное, электромагнитное, сильное, слабое.
Все взаимодействия являются проявлениями этих основных типов.
Примеры сил: сила тяжести, сила упругости, вес тела, сила трения, выталкивающая (архимедова) сила, подъемная сила.
Сила характеризуется:
1. Величиной (модулем);
2. Направлением;
3. Точкой приложения.
Из опыта по взаимодействию следует: или . Величина характеризует действие второго тела на первое, а величина — характеризует действие первого тела на второе. Т.к. взаимодействие одно и то же, то величину, равную произведению массы тела на ускорение, полученное в данном взаимодействии, можно принять за меру взаимодействия: . Внимание: вектора ускорения и силы всегда сонаправлены!
Т.к. сила – векторная величина, то силы складываются векторно (правила параллелограмма и треугольника). Складывать можно только силы, приложенные к одному телу. Сила, равная векторной сумме всех действующих на тело сил, называетсяравнодействующей: .
Измерение силы: силы измеряются динамометром по сравнению величины измеряемой силы с силой упругости пружины. Используется линейная зависимость между величиной силы упругости и удлинением пружины.
Для правильного измерения силы необходимо, чтобы при измерении
тела покоились или двигались прямолинейно и равномерно!
Динамометр градуируется известной силой тяжести.
1-й закон Ньютона.
Роль 1-го закона – он определяет, в каких СО выполняются законы динамики.
Существуют такие системы отсчета, относительно которых тело движется прямолинейно и равномерно или покоится, если на него не действуют другие тела или их действия скомпенсированы.
Другая формулировка: существуют такие системы отсчета, относительно которых тело движется прямолинейно и равномерно или покоится, если равнодействующая всех сил, действующих на тело, равна нулю.
Инерциальные системы отсчета.
СО, в которых выполняется 1-й закон Ньютона, называются инерциальными системами отсчета (ИСО).
Свойство ИСО: все СО, движущиеся прямолинейно и равномерно относительно данной ИСО, тоже являются инерциальными. СО, движущиеся относительно любой ИСО с ускорением, являются неинерциальными
В реальной жизни абсолютной ИСО не существует. СО можно считать инерциальной с той или иной степенью точности в определенных задачах. Например, Землю можно считать ИСО при исследовании движения автомобиля и нельзя – при исследовании полета ракеты (необходимо учитывать вращение).
Принцип относительности Галилея.
Все ИСО – равноправны: законы механики одинаковы во всех ИСО.
- Существуют такие системы отсчета в которых всякое тело будет сохранять
- Существуют такие системы отсчета относительно которых тела сохраняют свою скорость неизменной если