Степень что такое в алгебре

Свойства степеней. Действия со степенями

Степень что такое в алгебре. Смотреть фото Степень что такое в алгебре. Смотреть картинку Степень что такое в алгебре. Картинка про Степень что такое в алгебре. Фото Степень что такое в алгебре

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Что такое степень числа

В учебниках по математике можно встретить такое определение:

«Степенью n числа а является произведение множителей величиной а n раз подряд»

a — основание степени;

n — показатель степени.

Степень что такое в алгебре. Смотреть фото Степень что такое в алгебре. Смотреть картинку Степень что такое в алгебре. Картинка про Степень что такое в алгебре. Фото Степень что такое в алгебре

Читается такое выражение, как a в степени n

Если говорить проще то, степень, а точнее показатель степени (n), говорит нам о том, сколько раз следует умножить это число (основание степени) само на себя.

А значит, если у нас есть задачка, где спрашивают, как возвести число в степень, например, число 2 в третью степень, то она решается довольно просто:

2 — основание степени;

3 — показатель степени.

Если вам нужно быстро возвести число в степень, можно использовать наш онлайн-калькулятор. Но чтобы не упасть в грязь лицом на контрольной по математике, придется все-таки разобраться с теорией.

Рассмотрим пример из жизни, чтобы было понятно, для чего можно использовать возведение чисел в степень на практике.

Задачка про миллион: представьте, что у вас есть миллион рублей. В начале каждого года вы зарабатываете на нем еще два. Получается, что миллион каждый год утраивается. Был один, а стало три — и так каждый год. Здорово, правда? А теперь посчитаем, какая сумма у вас будет через 4 года.

Как решаем: один миллион умножаем на три (1·3), затем результат умножаем на три, потом еще на три. Наверное, вам уже стало стало скучно, потому что вы поняли, что три нужно умножить само на себя четыре раза. Так и сделаем:

Математики заскучали и решили все упростить:

Ответ: через четыре года у вас будет 81 миллион.

Таблица степеней

Здесь мы приведем результаты возведения в степень натуральных чисел от 1 до 10 в квадрат (показатель степени два) и куб (показатель степени 3).

Источник

Степени и их свойства

Данная тема очень легкая, если выучить все свойства степеней. Они, кстати, достаточно просты для запоминания.

Перед тем, как перейти в свойствам степеней, разберемся, что такое степень.

Степень что такое в алгебре. Смотреть фото Степень что такое в алгебре. Смотреть картинку Степень что такое в алгебре. Картинка про Степень что такое в алгебре. Фото Степень что такое в алгебре

Показатель степени показывает (масло масляное) сколько раз мы умножаем основание на себя. Это очень хорошо проглядывается на следующих примерах:

Степень что такое в алгебре. Смотреть фото Степень что такое в алгебре. Смотреть картинку Степень что такое в алгебре. Картинка про Степень что такое в алгебре. Фото Степень что такое в алгебре

Вроде бы ничего сложного нет, правда?

Что ж, время перейти к свойствам.

Свойства степеней.

1. Любое число в первой степени равно самому себе: a 1 = a.

Сразу рассмотрим примеры.

2. Любое число в нулевой степени равно 1: а 0 = 1.

3. Единица в любой степени равна 1: 1 n = 1.

Это свойство легко доказать на числовом примере.

Конечно, так никто не расписывает, а сразу пользуется готовой формулой. Вот еще несколько примеров:

3 4 · 3 9 · 3 15 = 3 4 + 9 + 15 = 3 2 8 ;

Степень что такое в алгебре. Смотреть фото Степень что такое в алгебре. Смотреть картинку Степень что такое в алгебре. Картинка про Степень что такое в алгебре. Фото Степень что такое в алгебре

Еще парочка примеров:

(2 2 ) 3 = 2 2 · 3 = 2 6 ;

8. Чтобы возвести дробь в степень надо и числитель, и знаменатель возвести в эту степень:Степень что такое в алгебре. Смотреть фото Степень что такое в алгебре. Смотреть картинку Степень что такое в алгебре. Картинка про Степень что такое в алгебре. Фото Степень что такое в алгебре.

Степень что такое в алгебре. Смотреть фото Степень что такое в алгебре. Смотреть картинку Степень что такое в алгебре. Картинка про Степень что такое в алгебре. Фото Степень что такое в алгебре

9. Степень с дробным показателем можно представить в виде корня некоторой степени по формуле Степень что такое в алгебре. Смотреть фото Степень что такое в алгебре. Смотреть картинку Степень что такое в алгебре. Картинка про Степень что такое в алгебре. Фото Степень что такое в алгебре(а > 0, n ≥ 2).

Степень что такое в алгебре. Смотреть фото Степень что такое в алгебре. Смотреть картинку Степень что такое в алгебре. Картинка про Степень что такое в алгебре. Фото Степень что такое в алгебре

10. Чтобы возвести число, отличное от нуля, в степень с отрицательным показателем надо взять число, обратное данному, и возвести его в ту же степень, только без минуса: Степень что такое в алгебре. Смотреть фото Степень что такое в алгебре. Смотреть картинку Степень что такое в алгебре. Картинка про Степень что такое в алгебре. Фото Степень что такое в алгебре(a ≠ 0).

Это же правило работает и для дробей: Степень что такое в алгебре. Смотреть фото Степень что такое в алгебре. Смотреть картинку Степень что такое в алгебре. Картинка про Степень что такое в алгебре. Фото Степень что такое в алгебре(a ≠ 0, b ≠ 0).

Степень что такое в алгебре. Смотреть фото Степень что такое в алгебре. Смотреть картинку Степень что такое в алгебре. Картинка про Степень что такое в алгебре. Фото Степень что такое в алгебре

Все эти свойства срабатывают как в одну сторону, так и в другую. Соберем их в аккуратную табличку.

Степень что такое в алгебре. Смотреть фото Степень что такое в алгебре. Смотреть картинку Степень что такое в алгебре. Картинка про Степень что такое в алгебре. Фото Степень что такое в алгебре

Нам нужно сократить такую дробь:

Степень что такое в алгебре. Смотреть фото Степень что такое в алгебре. Смотреть картинку Степень что такое в алгебре. Картинка про Степень что такое в алгебре. Фото Степень что такое в алгебре

Преобразуем знаменатель дроби, дважды использовав формулу по номером 5 из второго столбика таблицы.

Степень что такое в алгебре. Смотреть фото Степень что такое в алгебре. Смотреть картинку Степень что такое в алгебре. Картинка про Степень что такое в алгебре. Фото Степень что такое в алгебре

Получившиеся частные в знаменателе запишем в виде дробей.

Степень что такое в алгебре. Смотреть фото Степень что такое в алгебре. Смотреть картинку Степень что такое в алгебре. Картинка про Степень что такое в алгебре. Фото Степень что такое в алгебре

Получилась трехярусная дробь (можно произведение дробей в знаменателе переписать под одну черту). Нижний ярус этой дроби перейдет в верхний. Это не магия вне Хогвартса, но описывать эти преобразования текстом очень грустно. Если коротенько, то при делении на дробь мы ее переворачиваем и получается, что знаменатель заползает наверх 🙂

Степень что такое в алгебре. Смотреть фото Степень что такое в алгебре. Смотреть картинку Степень что такое в алгебре. Картинка про Степень что такое в алгебре. Фото Степень что такое в алгебре

Переходим к финалу. Преобразуем знаменатель по свойству 7 из второго столбика таблицы (снова) и, наконец-таки, сокращаем дробь!

Источник

Что такое степень числа

Обращаем ваше внимание, что в данном разделе разбирается понятие степени только с натуральным показателем и нулём.

Понятие и свойства степеней с рациональными показателями (с отрицательным и дробным) будут рассмотрены в уроках для 8 класса.

Итак, разберёмся, что такое степень числа. Для записи произведения числа самого на себя несколько раз применяют сокращённое обозначение.

Вместо произведения шести одинаковых множителей 4 · 4 · 4 · 4 · 4 · 4 пишут 4 6 и произносят «четыре в шестой степени».

4 · 4 · 4 · 4 · 4 · 4 = 4 6

Выражение 4 6 называют степенью числа, где:

В общем виде степень с основанием « a » и показателем « n » записывается с помощью выражения:

Степень что такое в алгебре. Смотреть фото Степень что такое в алгебре. Смотреть картинку Степень что такое в алгебре. Картинка про Степень что такое в алгебре. Фото Степень что такое в алгебре

Степень что такое в алгебре. Смотреть фото Степень что такое в алгебре. Смотреть картинку Степень что такое в алгебре. Картинка про Степень что такое в алгебре. Фото Степень что такое в алгебре

Исключение составляют записи:

Конечно, выражения выше можно читать и по определению степени:

Степенью числа « а » с показателем n = 1 является само это число:
a 1 = a

Любое число в нулевой степени равно единице.
a 0 = 1

Ноль в любой натуральной степени равен нулю.
0 n = 0

Единица в любой степени равна 1.
1 n = 1

Выражение 0 0 (ноль в нулевой степени) считают лишённым смысла.

При решении примеров нужно помнить, что возведением в степень называется нахождение числового или буквенного значения после его возведения в степень.

Пример. Возвести в степень.

Возведение в степень отрицательного числа

Основание степени (число, которое возводят в степень) может быть любым числом — положительным, отрицательным или нулём.

При возведении в степень положительного числа получается положительное число.

При возведении нуля в натуральную степень получается ноль.

При возведении в степень отрицательного числа в результате может получиться как положительное число, так и отрицательное число. Это зависит от того чётным или нечётным числом был показатель степени.

Рассмотрим примеры возведения в степень отрицательных чисел.

Степень что такое в алгебре. Смотреть фото Степень что такое в алгебре. Смотреть картинку Степень что такое в алгебре. Картинка про Степень что такое в алгебре. Фото Степень что такое в алгебре

Из рассмотренных примеров видно, что если отрицательное число возводится в нечётную степень, то получается отрицательное число. Так как произведение нечётного количество отрицательных сомножителей отрицательно.

Если же отрицательное число возводится в чётную степень, то получается положительное число. Так как произведение чётного количество отрицательных сомножителей положительно.

Квадрат любого числа есть положительное число или нуль, то есть:

Обратите внимание!

При решении примеров на возведение в степень часто делают ошибки, забывая, что записи (−5) 4 и −5 4 это разные выражения. Результаты возведения в степень данных выражений будут разные.

Вычислить (−5) 4 означает найти значение четвёртой степени отрицательного числа.

В то время как найти « −5 4 » означает, что пример нужно решать в 2 действия:

Пример. Вычислить: −6 2 − (−1) 4

Порядок действий в примерах со степенями

Вычисление значения называется действием возведения в степень. Это действие третьей ступени.

Если в выражении есть скобки, то сначала в указанном выше порядке выполняют действия в скобках, а потом оставшиеся действия в том же порядке слева направо.

Степень что такое в алгебре. Смотреть фото Степень что такое в алгебре. Смотреть картинку Степень что такое в алгебре. Картинка про Степень что такое в алгебре. Фото Степень что такое в алгебре

Для облегчения решения примеров полезно знать и пользоваться таблицей степеней, которую вы можете бесплатно скачать на нашем сайте.

Для проверки своих результатов вы можете воспользоваться на нашем сайте калькулятором «Возведение в степень онлайн».

Источник

Степень числа: определения, обозначение, примеры

В рамках этого материала мы разберем, что такое степень числа. Помимо основных определений мы сформулируем, что такое степени с натуральными, целыми, рациональными и иррациональными показателями. Как всегда, все понятия будут проиллюстрированы примерами задач.

Степени с натуральными показателями: понятие квадрата и куба числа

Сначала сформулируем базовое определение степени с натуральным показателем. Для этого нам понадобится вспомнить основные правила умножения. Заранее уточним, что в качестве основания будем пока брать действительное число (обозначим его буквой a ), а в качестве показателя – натуральное (обозначим буквой n ).

Разберем пример степени с натуральным показателем: для 5 7 пятерка будет основанием, а семерка – показателем.

Понятие степени является обратным другому математическому понятию – корню числа. Если мы знаем значение степени и показатель, мы можем вычислить ее основание. Степень обладает некоторыми специфическими свойствами, полезными для решения задач, которые мы разобрали в рамках отдельного материала.

Что такое степени с целым показателем

В показателях степени могут стоять не только натуральные числа, но и вообще любые целые значения, в том числе отрицательные и нули, ведь они тоже принадлежат к множеству целых чисел.

Степень числа с целым положительным показателем можно отобразить в виде формулы: Степень что такое в алгебре. Смотреть фото Степень что такое в алгебре. Смотреть картинку Степень что такое в алгебре. Картинка про Степень что такое в алгебре. Фото Степень что такое в алгебре.

При этом n – любое целое положительное число.

Разберемся с понятием нулевой степени. Для этого мы используем подход, учитывающий свойство частного для степеней с равными основаниями. Оно формулируется так:

Последнее условие важно, поскольку позволяет избежать деления на ноль. Если значения m и n равны, то мы получим следующий результат: a n : a n = a n − n = a 0

При желании легко проверить, что a 0 = 1 сходится со свойством степени ( a m ) n = a m · n при условии, что основание степени не равно нулю. Таким образом, степень любого отличного от нуля числа с нулевым показателем равна единице.

Такая формулировка подтверждает, что для степени с целым отрицательным показателем действительны все те же свойства, которыми обладает степень с натуральным показателем (при условии, что основание не равно нулю).

Проиллюстрируем нашу мысль конкретными примерами:

В последней части параграфа попробуем изобразить все сказанное наглядно в одной формуле:

Что такое степени с рациональным показателем

Мы разобрали случаи, когда в показателе степени стоит целое число. Однако возвести число в степень можно и тогда, когда в ее показателе стоит дробное число. Это называется степенью с рациональным показателем. В этом пункте мы докажем, что она обладает теми же свойствами, что и другие степени.

Далее нам необходимо определить, какие именно ограничения на значения переменных накладывает такое условие. Есть два подхода к решению этой проблемы.

Для степени с нулевым основанием это положение также подходит, но только в том случае, если ее показатель – положительное число.

Степень с нулевым основанием и дробным положительным показателем m / n можно выразить как

При отрицательном отношении m n 0 степень не определяется, т.е. такая запись смысла не имеет.

Отметим один момент. Поскольку мы ввели условие, что a больше или равно нулю, то у нас оказались отброшены некоторые случаи.

Если n – нечетное число, а значение m – положительно, a – любое неотрицательное число, то a m n имеет смысл. Условие неотрицательного a нужно, поскольку корень четной степени из отрицательного числа не извлекают. Если же значение m положительно, то a может быть и отрицательным, и нулевым, т.к. корень нечетной степени можно извлечь из любого действительного числа.

Объединим все данные выше определения в одной записи:

Здесь m/n означает несократимую дробь, m – любое целое число, а n – любое натуральное число.

Определение степени с дробным показателем, которое мы привели первым, удобнее применять на практике, чем второе, поэтому мы будем далее пользоваться именно им.

При вычислении же лучше заменять показатель степени обыкновенной дробью и далее пользоваться определением степени с дробным показателем. Для примеров выше у нас получится:

Что такое степени с иррациональным и действительным показателем

Что такое действительные числа? В их множество входят как рациональные, так и иррациональные числа. Поэтому для того, чтобы понять, что такое степень с действительным показателем, нам надо определить степени с рациональными и иррациональными показателями. Про рациональные мы уже упоминали выше. Разберемся с иррациональными показателями пошагово.

и так далее (при этом сами приближения являются рациональными числами).

Источник

Свойства степеней и действия с ними

Зачем нужны степени? Где они тебе пригодятся? Почему тебе нужно тратить время на их изучение?

Как обычно — чтобы облегчить себе жизнь. Знание свойств степеней позволит тебе упрощать вычисления и считать быстрее, что пригодится и в жизни и на ОГЭ или ЕГЭ!

Чтобы узнать все о степенях и научиться пользоваться свойствами степеней, читай эту статью.

P.S Если ты хорошо знаешь степени и тебе надо только повторить, переходи сразу к продвинутому уровню.

НАЧАЛЬНЫЙ УРОВЕНЬ

Степени. Коротко о главном

Определение степени:

Степень что такое в алгебре. Смотреть фото Степень что такое в алгебре. Смотреть картинку Степень что такое в алгебре. Картинка про Степень что такое в алгебре. Фото Степень что такое в алгебре

Свойства степеней:

Произведение степеней с одинаковым основанием:\( <^>\cdot <^>=<^>\)
Произведение степеней с одинаковыми показателями:\( <^>\cdot <^>=<<\left( a\cdot b \right)>^>\)
Деление степеней с одинаковым основанием:\( \frac<<^>><<^>>=<^>\)
Деление степеней с одинаковыми показателями:\( \frac<<^>><<^>>=<<\left( \frac \right)>^>\)
Возведение степени в степень:\( <<\left( <^> \right)>^>=<^>\)
Дробная степень:\( <^<\frac>>=\sqrt[m]<<^>>\)

Особенности степеней:

Возведение в степень – это такая же математическая операция, как сложение, вычитание, умножение или деление.

Сейчас объясню все человеческим языком на очень простых примерах. Будь внимателен. Примеры элементарные, но объясняющий важные вещи. Начнем со сложения.

Сложение

Объяснять тут нечего. Ты и так все знаешь: нас восемь человек. У каждого по две бутылки колы. Сколько всего колы? Правильно – 16 бутылок. Теперь умножение.

Умножение

Тот же самый пример с колой можно записать по-другому: \(\displaystyle 2\cdot 8=16\).

Математики — люди хитрые и ленивые. Они сначала замечают какие-то закономерности, а потом придумывают способ как быстрее их «считать».

В нашем случае они заметили, что у каждого из восьми человек одинаковое количество бутылок колы и придумали прием, который называется умножением.

Согласись, \(\displaystyle 2\cdot 8=16\) считается легче и быстрее, чем \(\displaystyle 2+2+2+2+2+2+2+2=16\).

И еще одна важная деталь. Ошибок при таком счете делается гораздо меньше. Математики из Стэнфорда, кстати, считают, что человек, знающий приемы счета, делает это в два раза легче и быстрее и совершает в два раза меньше ошибок. Работы меньше, а результат лучше.

Итак, чтобы считать быстрее, легче и без ошибок, нужно всего лишь запомнить таблицу умножения. Ты, конечно, можешь делать все медленнее, труднее и с ошибками, но лучше ее запомнить! Вот таблица умножения. Выучи ее наизусть.

Степень что такое в алгебре. Смотреть фото Степень что такое в алгебре. Смотреть картинку Степень что такое в алгебре. Картинка про Степень что такое в алгебре. Фото Степень что такое в алгебре

И другая таблица, красивее:

Степень что такое в алгебре. Смотреть фото Степень что такое в алгебре. Смотреть картинку Степень что такое в алгебре. Картинка про Степень что такое в алгебре. Фото Степень что такое в алгебре

А какие еще хитрые приемы счета придумали ленивые математики? Правильно – возведение числа в степень.

Возведение числа в степень

Если тебе нужно умножить число само на себя пять раз, то математики говорят, что тебе нужно возвести это число в пятую степень.

Например, \(\displaystyle 2\cdot 2\cdot 2\cdot 2\cdot 2=<<2>^<5>>\). Математики помнят, что два в пятой степени – это \(\displaystyle 32\).

И решают такие задачки в уме – быстрее, легче и без ошибок.

Для этого нужно всего лишь запомнить то, что выделено цветом в таблице степеней чисел. Поверь, это сильно облегчит тебе жизнь.

Степень что такое в алгебре. Смотреть фото Степень что такое в алгебре. Смотреть картинку Степень что такое в алгебре. Картинка про Степень что такое в алгебре. Фото Степень что такое в алгебре

Кстати, почему вторую степень называют квадратом числа, а третью — кубом? Что это значит? Очень хороший вопрос. Сейчас будут тебе и квадраты, и кубы.

Примеры из жизни

Начнем с квадрата или со второй степени числа.

Представь себе квадратный бассейн размером \( \displaystyle 3\) метра на \( \displaystyle 3\) метра. Бассейн стоит у тебя на даче. Жара и очень хочется купаться.

Но… бассейн без дна! Нужно застелить дно бассейна плиткой. Сколько тебе надо плитки? Для того чтобы это определить, тебе нужно узнать площадь дна бассейна.

Ты можешь просто посчитать, тыкая пальцем, что дно бассейна состоит из \( \displaystyle 9\) кубиков метр на метр. Если у тебя плитка метр на метр, тебе нужно будет \( \displaystyle 9\) кусков. Это легко…

Но где ты видел такую плитку? Плитка скорее будет \( \displaystyle 10\) см на \( \displaystyle 10\) см. И тогда «пальцем считать» замучаешься. Тогда придется умножать.

Итак, по одной стороне дна бассейна у нас поместится \( \displaystyle 30\) плиток (\( \displaystyle \frac<300\ см><10\ см>=30\) штук) и по другой тоже \( \displaystyle 30\) плиток.

Ты заметил, что для определения площади дна бассейна мы умножили одно и то же число само на себя? Что это значит? Раз умножается одно и то же число, мы можем воспользоваться приемом «возведение в степень».

Конечно, когда у тебя всего два числа, все равно перемножить их или возвести в степень. Но если у тебя их много, то возводить в степень значительно проще и ошибок при расчетах получается тоже меньше.

Иными словами, вторую степень числа всегда можно представить в виде квадрата. И наоборот, если ты видишь квадрат – это ВСЕГДА вторая степень какого-то числа.

Квадрат – это изображение второй степени числа.

Степень что такое в алгебре. Смотреть фото Степень что такое в алгебре. Смотреть картинку Степень что такое в алгебре. Картинка про Степень что такое в алгебре. Фото Степень что такое в алгебре

Степень что такое в алгебре. Смотреть фото Степень что такое в алгебре. Смотреть картинку Степень что такое в алгебре. Картинка про Степень что такое в алгебре. Фото Степень что такое в алгебре

Теперь куб или третья степень числа. Тот же самый бассейн. Но теперь тебе нужно узнать, сколько воды придется залить в этот бассейн. Тебе нужно посчитать объем. (Объемы и жидкости, кстати, измеряются в кубических метрах. Неожиданно, правда?)

Нарисуй бассейн: дно размером \( \displaystyle 3\) на \( \displaystyle 3\) метра и глубиной \( \displaystyle 3\) метра и попробуй посчитать, сколько всего кубов размером метр на метр войдет в твой бассейн.

Прямо показывай пальцем и считай! Раз, два, три, четыре…двадцать два, двадцать три… Сколько получилось? Не сбился? Трудно пальцем считать?

Так-то! Бери пример с математиков. Они ленивы, поэтому заметили, что чтобы посчитать объем бассейна, надо перемножить друг на друга его длину, ширину и высоту.

В нашем случае объем бассейна будет равен \( \displaystyle 3\cdot 3\cdot 3=27\) кубов… Легче правда?

А теперь представь, насколько математики ленивы и хитры, если они и это упростили. Свели все к одному действию. Они заметили, что длина, ширина и высота равна и что одно и то же число перемножается само на себя…

Степень что такое в алгебре. Смотреть фото Степень что такое в алгебре. Смотреть картинку Степень что такое в алгебре. Картинка про Степень что такое в алгебре. Фото Степень что такое в алгебре

Остается только запомнить таблицу степеней. Если ты, конечно, такой же ленивый и хитрый как математики. Если любишь много работать и делать ошибки – можешь продолжать считать пальцем.

Ну и чтобы окончательно убедить тебя, что степени придумали лодыри и хитрюги для решения своих жизненных проблем, а не для того чтобы создать тебе проблемы, вот тебе еще пара примеров из жизни.

У тебя есть \( \displaystyle 2\) миллиона рублей. В начале каждого года ты зарабатываешь на каждом миллионе еще один миллион. То есть каждый твой миллион в начале каждого года удваивается. Сколько денег у тебя будет через \( \displaystyle 5\) лет?

Если ты сейчас сидишь и «считаешь пальцем», значит ты очень трудолюбивый человек и.. глупый. Но скорее всего ты дашь ответ через пару секунд, потому что ты – умный! Итак, в первый год — два умножить на два… во второй год — то, что получилось, еще на два, в третий год… Стоп!

Ты заметил, что число \( \displaystyle 2\) перемножается само на себя \( \displaystyle 6\) раз. Значит, два в шестой степени – \( \displaystyle 64\) миллиона! А теперь представь, что у вас соревнование и эти \( \displaystyle 64\) миллиона получит тот, кто быстрее посчитает…

Стоит запомнить степени чисел, как считаешь?

У тебя есть \( \displaystyle 1\) миллион. В начале каждого года ты зарабатываешь на каждом миллионе еще два. Здорово правда? Каждый миллион утраивается. Сколько денег у тебя будет через \( \displaystyle 4\) года?

Уже скучно, потому что ты уже все понял: три умножается само на себя \( \displaystyle 4\) раза.

Теперь ты знаешь, что с помощью возведения числа в степень ты здорово облегчишь себе жизнь. Давай дальше посмотрим на то, что можно делать со степенями и что тебе нужно знать о них.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *