Существуют ли такие натуральные числа m и n что mn m n 2019

Существуют ли такие натуральные числа m и n что mn m n 2019

а) Существует ли такое натуральное число n, что числа n 2 и (n + 17) 2 имеют одинаковые остатки при делении на 69?

б) Существует ли такое натуральное число n, что числа n 2 и (n + 17) 2 имеют одинаковые остатки при делении на 68?

в) Пусть k(m) — количество трехзначных натуральных чисел n, таких, что числа n 2 и (n + m) 2 имеют одинаковые остатки при делении на 68, причем m — двузначное натуральное число. Определите наименьшее значение k, отличное от нуля.

а) Разность этих чисел равна

Существуют ли такие натуральные числа m и n что mn m n 2019. Смотреть фото Существуют ли такие натуральные числа m и n что mn m n 2019. Смотреть картинку Существуют ли такие натуральные числа m и n что mn m n 2019. Картинка про Существуют ли такие натуральные числа m и n что mn m n 2019. Фото Существуют ли такие натуральные числа m и n что mn m n 2019

Если выбрать n так, чтобы Существуют ли такие натуральные числа m и n что mn m n 2019. Смотреть фото Существуют ли такие натуральные числа m и n что mn m n 2019. Смотреть картинку Существуют ли такие натуральные числа m и n что mn m n 2019. Картинка про Существуют ли такие натуральные числа m и n что mn m n 2019. Фото Существуют ли такие натуральные числа m и n что mn m n 2019(то есть ), то полученное число будет кратно 69, а изначальные два будут давать одинаковые остатки от деления на 68.

б) Одно из этих чисел четно, а другое нечетно. Значит, они не могут давать одинаковые остатки от деления на четное число.

в) Как и в пункте а) получим, что Существуют ли такие натуральные числа m и n что mn m n 2019. Смотреть фото Существуют ли такие натуральные числа m и n что mn m n 2019. Смотреть картинку Существуют ли такие натуральные числа m и n что mn m n 2019. Картинка про Существуют ли такие натуральные числа m и n что mn m n 2019. Фото Существуют ли такие натуральные числа m и n что mn m n 2019кратно 68. Если m нечетно, то это произведение двух нечетных чисел и оно не кратно 68. Пусть Существуют ли такие натуральные числа m и n что mn m n 2019. Смотреть фото Существуют ли такие натуральные числа m и n что mn m n 2019. Смотреть картинку Существуют ли такие натуральные числа m и n что mn m n 2019. Картинка про Существуют ли такие натуральные числа m и n что mn m n 2019. Фото Существуют ли такие натуральные числа m и n что mn m n 2019тогда

Существуют ли такие натуральные числа m и n что mn m n 2019. Смотреть фото Существуют ли такие натуральные числа m и n что mn m n 2019. Смотреть картинку Существуют ли такие натуральные числа m и n что mn m n 2019. Картинка про Существуют ли такие натуральные числа m и n что mn m n 2019. Фото Существуют ли такие натуральные числа m и n что mn m n 2019

кратно 68. То есть Существуют ли такие натуральные числа m и n что mn m n 2019. Смотреть фото Существуют ли такие натуральные числа m и n что mn m n 2019. Смотреть картинку Существуют ли такие натуральные числа m и n что mn m n 2019. Картинка про Существуют ли такие натуральные числа m и n что mn m n 2019. Фото Существуют ли такие натуральные числа m и n что mn m n 2019кратно 17. Если x кратно 17, то все такие числа кратны 17, что нам невыгодно. Значит, кратно 17. Подходящие n попадаются через каждые 17 чисел. В качестве x можно выбирать числа от 5 до 49 (поскольку 2x — двузначное число).

Среди чисел от 100 до 984 ровно 52 числа с каждым остатком от деления на 17. А среди чисел от 985 до 999 нет, например, числа с остатком 14 (таким числом было бы 1000). Поэтому если выбрать (то есть ), то будет 52 подходящих числа.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *