реакция при жарке мяса

Химия на шампуре

Хорошо ли ученые разбираются в приготовлении шашлыка

Наступило лето, а с ним и время походов на природу — за свежим воздухом, теплой погодой и, конечно же, шашлыками. Есть десятки различных рецептов и советов, как правильно жарить шашлык, а также сотни их комбинаций. Споры о том, какое мясо выбирать, с какими специями его мариновать и сколько держать над углями, мы оставим искушенным любителям и профессионалам, а вместо этого попробуем разобраться, какие химические превращения происходят с шашлыком на всех этапах его приготовления.

Приготовление шашлыка, с точки зрения химика, — сложный процесс, на каждом этапе которого происходит большое количество тонких и взаимосвязанных реакций. Если подойти к делу с умом, рецепт хорошего шашлыка будет сопоставим, а то и превзойдет, отдельные методики органического синтеза. И, как в полноценном научном эксперименте, в приготовлении шашлыка есть множество деталей, от которых зависит оптимизация процесса — а значит, вкус и аромат конечного продукта.

Итак, чтобы приготовить шашлык, необходимо выполнить два основных действия: замариновать мясо и обжарить его на углях. Но сперва давайте разберемся, что такое мясо — с точки зрения химии.

То, что мы называем мясом и покупаем в магазине под видом свинины и говядины, на самом деле является скелетной поперечно-полосатой мускулатурой животных. Если, конечно же, мы не будем рассматривать субпродукты, например сердце, которые не используются для шашлыка. Кроме собственно мышечной ткани, к мясу относят еще жировую и соединительную ткань, которая к ним прилегает.

Мышечная ткань имеет любопытное строение. Мы привыкли к тому, что клетки нашего организма обычно очень малы, не различимы глазом. Структурной единицей мышцы является мышечное волокно — и это одна большая клетка длиной несколько сантиметров и диаметром сотни микрометров. Она образуется при слиянии тысяч других клеток, из-за чего в мышечном волокне может быть несколько тысяч ядер.

Главное свойство мышечных волокон — способность сокращаться. Именно так мы (и другие животные) двигаем конечностями — и не только. Это обеспечивают специальные белки — актин и миозин. Это вытянутые молекулы, формирующие длинные пучки внутри клеток. Под действием внешних факторов (нервного импульса) эти пучки начинают двигаться друг относительно друга, стягиваясь к центру. Все волокно разбито на отдельные звенья — саркомеры, скрепленные между собой.

Кроме того, мясо содержит большие количества белков эластина и коллагена в соединительной ткани. Они во многом отвечают за механические характеристики мяса (жесткость и так далее). За цвет мяса отвечает белок миоглобин. В общем, мясо — во многом белковый продукт, но, конечно, и жировых прослоек в нем хватает.

Маринование

Мясо маринуют для того, чтобы решить сразу несколько задач: сделать его мягче, придать ему дополнительный аромат и провести первичную антимикробную обработку.

Молекулы коллагена, определяющего твердость мяса, в норме образуют прочные волокна, фибриллы. Эта сборка происходит под действием водородных связей — притяжения между частично заряженными (поляризованными) фрагментами аминокислот. Точно такие же связи возникают между молекулами воды — между атомом водорода одной молекулы и кислородом другой.

Многие маринады обладают кислой реакцией из-за наличия в них кислот — чаще всего уксусной (например, в вине, майонезе или уксусе), лимонной и молочной. Кислой средой обладает и соевый соус, а также соус терияки — они содержат большое количество пироглутаминовой кислоты, а также янтарной, лимонной, муравьиной и уксусной. Это означает, что в маринадах есть много катионов водорода, которые способны связываться с молекулами белков, протонировать их. Это изменяет распределение зарядов в молекулах и нарушает тонкую структуру водородных связей, что приводит к изменению геометрии белковых молекул. В результате происходит денатурация белков: волокна коллагена и актина разбухают, размягчаются, коллаген постепенно растворяется.

Того же эффекта можно достигнуть и без применения кислот. Например, некоторые тропические фрукты, такие как папайя и ананас, содержат ферменты, разлагающие эластин и коллаген до одиночных аминокислот, а протеазы бактерий и грибов способны аналогичным образом разрушать белки мышечных волокон. Есть и физические методы смягчения мяса — выдерживание при давлениях порядка нескольких тысяч атмосфер, которое тоже приводит к денатурации белков.

Скорость, с которой происходит маринование мяса, также зависит от состава маринада. Например, было показано, что наличие спирта в маринаде ускоряет процесс маринования. Это связано с тем, что липидная оболочка клеток лучше растворяется в спирте, чем в воде. Также свою роль в смягчении мяса играют различные вспомогательные вещества — такие как таннины в вине и пиве.

Стоит заметить, что маринование не всегда приводит к размягчению мяса. В некоторых ситуациях при избыточном мариновании (в присутствии слишком большого количества кислоты или спирта) ткани теряют воду и становятся слишком твердыми. Такого же эффекта можно достигнуть, если пережарить мясо — тогда большая часть воды из него попросту «улетит».

Второй по важности эффект — антимикробный. Но за него ответственны не только кислоты, но и другие компоненты маринада, такие как лук. Различным способам уничтожения вредоносных организмов в мясе посвящено довольно много исследований, в одном из самых любопытных авторы предлагали добавить к стандартной схеме маринования мяса в пиве еще и обработку в ультразвуковой ванне.

Надо заметить, что на втором этапе приготовления шашлыка запускается синтез некоторых канцерогенов — вредных веществ, потенциально способных вызвать рак. В особенности это относится к продуктам обугливания жира, капающего на угли. Среди них есть бензо[a]пирен и другие полиароматические углеводороды. Другой класс канцерогенов, возникающий при обугливании мяса — гетероциклические амины. Эти вещества способны образовывать комплексы с ДНК и влиять на жизнедеятельность клеток. Одно из исследований даже обнаружило корреляцию между частым употреблением копченого или жаренного на гриле мяса с некоторыми видами рака. Соответственно, рекомендуется по возможности уменьшить употребление таких веществ. Но и тут может помочь маринование.

Есть несколько исследований, проведенных португальскими и испанскими химиками, которые указывают на то, что некоторые виды маринада уменьшают вероятность образования этих канцерогенов. Например, маринование в темном пиве отчасти ингибирует образование полиароматических углеводородов, а чтобы уменьшить долю образующихся гетероциклических аминов, следует выбирать маринады на основе вина, пива или даже содержащие чай. В целом же влияние маринадов на образование полиароматических углеводородов в целом все еще не так хорошо изучено. В число других возможных ингибиторов входят лук, чеснок, специи и маринады с лимонной кислотой.

Жарка

Маринование, за счет денатурации большой части белков, значительно ускоряет процесс готовки мяса. Это позволяет избежать длительного воздействия тепла и испарения слишком большого количества воды. Вместе с ускорением денатурации белков, жарка на углях инициирует в мясе много других химических процессов.

Первый из них — известная реакция Майяра. Именно она отвечает за образование сильно пахнущих органических веществ, придающих особый запах жареному мясу. В эту реакцию вступают аминокислоты, находящиеся в мясе, и сахара. В результате образуются сложные гетероциклические соединения, производные фурана, тиофена, алкилпиридины и пиразины.

реакция при жарке мяса. Смотреть фото реакция при жарке мяса. Смотреть картинку реакция при жарке мяса. Картинка про реакция при жарке мяса. Фото реакция при жарке мяса

Продукты реакции Майяра, основные компоненты запаха жареного мяса

Источник

Как знания химии помогают правильно жарить мясо

Вы помните восхитительный запах жарящегося на раскаленной сковороде или гриле мяса? А цвет румяной корочки на стейке? Да, такое забыть сложно — настолько эти гастрономические картины аппетитные и запоминающейся. Можно описывать их разными словами, а можно сказать по-научному: это всё результат реакции Майяра. Используем научные знания во благо кулинарии и учимся жарить мясо правильно.

реакция при жарке мяса. Смотреть фото реакция при жарке мяса. Смотреть картинку реакция при жарке мяса. Картинка про реакция при жарке мяса. Фото реакция при жарке мяса

реакция при жарке мяса. Смотреть фото реакция при жарке мяса. Смотреть картинку реакция при жарке мяса. Картинка про реакция при жарке мяса. Фото реакция при жарке мяса

реакция при жарке мяса. Смотреть фото реакция при жарке мяса. Смотреть картинку реакция при жарке мяса. Картинка про реакция при жарке мяса. Фото реакция при жарке мяса

реакция при жарке мяса. Смотреть фото реакция при жарке мяса. Смотреть картинку реакция при жарке мяса. Картинка про реакция при жарке мяса. Фото реакция при жарке мяса

Белки — это цепочки крошечных, связанных между собой строительных блоков, называемых «аминокислотами». При высокой температуре они начинают активно контактировать с сахарами, содержащимися в мясе, чтобы потом превратиться в более сложные соединения. Именно эти соединения ответственны за появление аппетитного и такого призывного цвета, аромата и вкуса продуктов, подвергнутых термической обработке. Реакция Майяра ускоряется с повышением температуры и поэтому интенсивно протекает при варке, жарке и выпечке. У реакции несколько стадий (фаз), это, своего рода, целый комплекс последовательных процессов, которые «окрашивают» продукт в золотисто-коричневый цвет.

Реакция Майяра запускается примерно при 140 °C. При этом должно происходить не долгое и медленное нагревание, а стремительное повышение температуры. Почему вареное мясо не выглядит таким аппетитным? Потому что максимальная температура достигает всего 100 °C и процесс происходит в воде. Её присутствие на поверхности мяса продлевает время приготовления и снижает температуру, поскольку для испарения жидкости требуется больше времени. Жарка — в противовес варке — обеспечивает превосходную реакцию Майара: процесс происходит в безводной среде при очень высокой температуре. Отсюда и характерный аромат, а также цвет, и вкус!

Правила запуска реакции Майяра или Как правильно жарить мясо

Для получения хорошо поджаренного стейка с безошибочным верным «жареным» ароматом:

1. Не выбирайте для жарки слишком постное мясо.

2. Мясо должно быть абсолютно сухим. Достаньте мясо из холодильника за несколько часов до приготовления и тщательно протрите кухонным полотенцем. Процесс жарки в дальнейшем будет происходит при такой высокой температуре и в течение такого короткого времени, что в середине куска мясо не должно быть слишком холодным, иначе оно рискует остаться сырым.

3. Смажьте поверхность мяса рафинированным маслом, которое не будет гореть во время жарки. Или как говорят профессионалы: у которого высокая точка дымления. Жир изолирует мясо от прямого контакта со сковородой (или грилем) и предотвратит прилипание. Плюс он обеспечивает равномерное распределение тепла и образование восхитительной корочки по всей поверхности мяса.

4. Дома жарьте мясо на тяжелой чугунной сковороде. На ней мясо пожариться равномернее.

5. Нагрейте гриль или жаровню до правильной температуры: выше 140 °C и ниже 170 °C, чтобы мясо не горело. Положите мясо на раскалённую поверхность и не трогайте его, по крайней мере, пару минут (в зависимости от толщины мяса). Пусть реакция Майяра просто идёт своим чередом, формируя восхитительные запахи и ароматы. Потом кусок переверните и оставьте нетронутым ещё на пару минут.

Совет: если кусок мяса толстый и вы предпочитаете среднюю прожарку, переложите мясо в форму или на противень у подпеките в нагретой до 230-240 °C духовке по паре минут с каждой стороны.

6. Оберните обжаренное мясо фольгой и оставьте на 2-3 минуты, чтобы внутренние мясные соки распределились в мясе равномерно, это сделает стейк сочным. Последний штрих: немного соли, свежемолотого перца и оливкового масла.

Ответ на вопрос: можно ли жарить замороженный стейк ищите здесь.

Источник

Реакция Майяра, или Чем пахнет молоко

реакция при жарке мяса. Смотреть фото реакция при жарке мяса. Смотреть картинку реакция при жарке мяса. Картинка про реакция при жарке мяса. Фото реакция при жарке мяса

Реакция Майяра, или Чем пахнет молоко

Мы много знаем о реакции Майяра в кофе — это то самое взаимодействие аминокислот и сахаров, которое превращает кофейное зерно из зелёного в коричневое и придаёт ему приятный аромат свежей выпечки. Юлия Климанова, с которой мы обсуждали вопросы взаимодействия молока и кофе, поделилась любопытным наблюдением: оказывается, реакция Майяра происходит и в молоке. Что это значит и как влияет на вкусоароматические свойства молока, мы узнаем из статьи Юлии.

Реакция Майяра — одна из самых распространённых реакций в пищевой химии. В английском языке она называется non-enzymatic browning reaction — это означает, что в процессе реакции образуются вещества, придающие продукту коричневый цвет, но это вызвано не деятельностью ферментов, как бывает, например, в случае с надкусанным яблоком, а особенностью продуктов реакции. Чтобы понять, происходит ли она в том или ином продукте, нужно знать, есть ли в нём белки, углеводы, а также собираетесь ли вы нагревать продукт. Если ответ «да», то реакция Майяра будет запущена. Стадия её развития будет зависеть от условий нагревания, но об этом поговорим далее.

С химической точки зрения, реакция Майяра — это реакция между аминокислотами и сахарами при нагревании. Примеров этой реакции множество: жарка мяса, обжарка кофе, выпечка хлеба и т. д. По мере развития реакции Майяра образуются продукты, обладающие характерными запахом, который порой не даёт устоять перед свежеприготовленным стейком или только что испечённым круассаном. Но всегда ли появление характерных запахов и вкусов является необходимым? Определённо, нет.

Есть довольно распространённое мнение, якобы в молоке не происходит реакции Майяра. Вернёмся к началу нашего рассуждения и проанализируем, соответствует ли молоко условиям, необходимым для реакции Майяра.

Перед тем как попасть на полки супермаркетов, молоко должно пройти термическую обработку — пастеризацию, ультрапастеризацию или стерилизацию. Это необходимо для обеспечения микробиологической безопасности молока и, как следствие, продления его срока хранения. Каждый из этих методов по-своему эффективен, но в любом случае «запускает» реакцию Майяра в молоке. Выбор метода тепловой обработки определяет не только микробиологические параметры готового продукта, но и его органолептические свойства, то есть все, что мы можем оценить с помощью органов чувств.

реакция при жарке мяса. Смотреть фото реакция при жарке мяса. Смотреть картинку реакция при жарке мяса. Картинка про реакция при жарке мяса. Фото реакция при жарке мяса

Пастеризация — это процесс, отвечающий минимальным требованиям к тепловой обработке. В этом случае молоко нагревают до 85°C на 2-3 секунды. При ультрапастеризации молоко подвергают температуре 135-150°C на 1-10 секунд в зависимости от метода. Стерилизация — это наиболее агрессивный метод тепловой обработки молока. Его выдерживают при температуре 115-120°С от 20 минут. Стерилизованное молоко, как правило, поставляют в больницы и детские учреждения, чтобы исключить возможность отравления. После нагревания любым из способов молоко охлаждают и расфасовывают в обычную или покрытую антисептическим слоем изнутри тару.

Несмотря на то что в случае ультра- и простой пастеризации молоко нагревается всего на несколько секунд, это приводит ко многим необратимым химическим изменениям в его составе. Помимо инактивации ферментов и уничтожения патогенных бактерий (а в случае ультрапастеризации ещё и их спор, что позволяет молоку храниться около года при комнатной температуре), влияние оказывается и на основные компоненты молока — белки, жиры, углеводы, — и на витамины. Ультрапастеризация ведет к потере 10-30% витамина С, фолиевой кислоты, витаминов B6, B12 и B1.

Итак, происходит ли реакция Майяра в молоке? Безусловно, да. Яркий тому пример — топлёное молоко и варёная сгущёнка, отличающиеся характерным вкусом, запахом и цветом.

реакция при жарке мяса. Смотреть фото реакция при жарке мяса. Смотреть картинку реакция при жарке мяса. Картинка про реакция при жарке мяса. Фото реакция при жарке мяса

Реакция Майяра является необратимым последствием нагревания молока, зависит от его интенсивности и продолжается на протяжении всего срока хранения молока. То есть постоянное нагревание — необязательное условие для реакции Майяра, достаточно однократной температурной обработки с последующим хранением молока.

Несколько слов о природе реакции Майяра. Это комплексная реакция, протекающая в несколько стадий. На начальном этапе под действием температуры аминогруппа белка — в молоке это в основном ε-аминогруппа остатков лизина из κ-казеина и сывороточных белков — реагирует с карбонильной группой основного молочного сахара — лактозы. Иными словами, белки реагируют с лактозой при нагревании. В результате этого взаимодействия образуется промежуточное нестабильное вещество, так называемое основание Шиффа, которое сразу подвергается дальнейшим преобразованиям с образованием раннего продукта Амадори — лактулозил лизина. Именно продукты Амадори на более поздних стадиях реакции Майяра претерпевают множественные изменения с образованием более 3500 характерных летучих ароматических соединений. Эти ароматы могут быть как желательными, так и нет.

Если кратко, то ε-аминогруппа лизина + карбонильная группа лактозы ↔ основание Шиффа ↔ продукт Амадори → меланоидины (высокомолекулярные азотистые соединения коричневого цвета) и полимеризованные белки.

Эта схема очень кратко описывает реакцию Майяра в молоке, поскольку на самом деле происходит множество химических превращений внутри реакции, но она отражает её непосредственную суть.

Стоит отметить, что не все ароматические соединения образуются в результате реакции Майяра. Некоторые из них являются продуктами высвобождения сульфгидрильных, или тиоловых, групп (-SH groups, серосодержащие реактивные группы), которые выходят на поверхность сывороточных белков и белков их мембраны жировых глобул в процессе денатурации. Также каждое молоко обладает своим «естественным» запахом, то есть тем, который оно приобретает в зависимости от корма и метаболизма коров, а также запахом, появляющимся в процессе хранения.

реакция при жарке мяса. Смотреть фото реакция при жарке мяса. Смотреть картинку реакция при жарке мяса. Картинка про реакция при жарке мяса. Фото реакция при жарке мяса

Итак, в молоке из-за нагревания (продолжительного) образуются коричневые пигменты меланоидины, а также множество ароматических соединений.

Присутствие этих соединений можно проверить с помощью газовой хроматографии/масс-спектрометрии, то есть с использованием специального оборудования, недоступного всем заинтересованным в контроле органолептических свойств молока. Поэтому мы поставили цель сравнить ароматический состав разных видов коровьего молока, в первую очередь пастеризованного и ультрапастеризованного, а также безлактозного молока, поскольку из него удален основной молочный сахар — лактоза, соответственно, реакция Майяра должна протекать не в той же мере, что и в обычном молоке с лактозой. Основная задача — сравнить интенсивность запаха холодного и нагретого с помощью паровика кофемашины до разных температур молока.

Что же известно о результатах реакции Майяра на данный момент? Ультрапастеризованное молоко действительно обладает более интенсивным запахом, чем пастеризованное. Более того, в холодном ультрапастеризованном молоке присутствуют не все ароматы из тех, что есть в нагретом.

Что касается характера ароматов/вкусов, образующихся при нагревании молока, — есть 4 основные группы, которые описывают как: «сернистый или приготовленный/cooked or sulphurous», «нагретый или насыщенный/heated or rich», «карамельный/caramelised» и «жженый, горелый/scorched».

реакция при жарке мяса. Смотреть фото реакция при жарке мяса. Смотреть картинку реакция при жарке мяса. Картинка про реакция при жарке мяса. Фото реакция при жарке мяса

В таблице ниже приводятся некоторые ароматические соединения ультрапастеризованного молока. Как видно, ароматы описываются и как положительные — ванильный, кокосовый, сладкий, — и как нежелательные — землистый, металлический, ржавый.

реакция при жарке мяса. Смотреть фото реакция при жарке мяса. Смотреть картинку реакция при жарке мяса. Картинка про реакция при жарке мяса. Фото реакция при жарке мяса

Таким образом, любое свежее молоко обладает индивидуальным специфическим запахом в зависимости от корма, породы, условий содержания и особенностей метаболизма коров. Этот запах будет меняться в зависимости от температурной обработки, срока и условий хранения. Нагревание молока приводит к образованию летучих ароматических соединений из белков, углеводов и жиров молока путем сложных превращений. Эти ароматические соединения могут быть как желательными, так и нет. Важно помнить, что более интенсивное нагревание молока и последующее длительное хранение приводят к образованию большего количества новых ароматов и, как следствие, вкусов.

Ссылки на исследования:

Aalaei, K., Rayner, M., Sjöholm, I. (2019). Chemical methods and techniques to monitor early Maillard reaction in milk products; A review. Critical reviews in food science and nutrition, 59(12), 1829—1839

Belitz, H.-D., & Grosch, W., Schieberle, P. (2009). Food chemistry, 4th edition. Berlin: Springer Verlag

Campbell, R. E., & Drake, M. A. (2013). Invited review: The effect of native and nonnative enzymes on the flavor of dried dairy ingredients. Journal of dairy science, 96(8), 4773—4783

Chávez-Servín, J. L., Castellote, A. I., & López-Sabater, M. C. (2008). Volatile compounds and fatty acid profiles in commercial milk-based infant formulae by static headspace gas chromatography: Evolution after opening the packet. Food Chemistry, 107(1), 558—569

Deeth H. (2017). Optimum Thermal Processing for Extended Shelf-Life (ESL) Milk. Foods (Basel, Switzerland), 6(11), 102

Edris, A. E., Murkovic, M., & Siegmund, B. (2007). Application of headspace-solid-phase microextraction and HPLC for the analysis of the aroma volatile components of treacle and determination of its content of 5-hydroxymethylfurfural (HMF). Food Chemistry, 104(3), 1310—1314

Gopal, N., Hill, C., Ross, P. R., Beresford, T. P., Fenelon, M. A., & Cotter, P. D. (2015). The Prevalence and Control of Bacillus and Related Spore-Forming Bacteria in the Dairy Industry. Frontiers in microbiology, 6, 1418

Hougaard, A., Vestergaard, J., Varming, C., Bredie, W., & Ipsen, R. (2011). Composition of volatile compounds in bovine milk heat treated by instant infusion pasteurisation and their correlation to sensory analysis. International Journal of Dairy Technology, 64, 34—44

Lin, H., Liu, Y., He, Q., Liu, P., Che, Z., Wang, X., & Huang, J. (2019). Characterization of odor components of Pixian Douban (broad bean paste) by aroma extract dilute analysis and odor activity values. International Journal of Food Properties, 22(1), 1223—1234

O’Brien, J. (2009). Non-Enzymatic Degradation Pathways of Lactose and Their Significance in Dairy Products. Advanced Dairy Chemistry, 231—294

Rizzi, G. P. (1999). The Strecker Degradation and Its Contribution to Food Flavor. Flavor Chemistry, 335—343

Kumar, N., Raghavendra, M., Tokas, J., Singal, H.R. (2017). Chapter 10 — Flavor Addition in Dairy Products: Health Benefits and Risks, Editor(s): Ronald Ross Watson, Robert J. Collier, Victor R. Preedy, Nutrients in Dairy and their Implications on Health and Disease, AcademicPress,123-135

Jo, Y., Benoist, D.M., Barbano, D., Drake, M.A. (2018). Flavor and flavor chemistry differences among milks processed by high temperature, short time or ultra-pasteurization. Journal of Dairy Science, 101

Su, X., Tortorice, M., Ryo, S., Li, X., Waterman, K., Hagen, A., & Yin, Y. (2020). Sensory Lexicons and Formation Pathways of Off-Aromas in Dairy Ingredients: A Review. Molecules, 25(3), 569

Sunds, A. V., Maximilian Rauh, V., Sørensen, J., & Larsen, L. B. (2018). Maillard reaction progress in UHT milk during storage at different temperature levels and cycles. International Dairy Journal, 77, 56-64

Van Boekel, M. A. J. S. (1998). Effect of heating on Maillard reactions in milk. Food Chemistry, 62(4), 403—414

Источник

Вездесущая реакция Майара

Ольга Владимировна Космачевская,
кандидат биологических наук, Институт биохимии им. А. Н. Баха РАН
«Химия и жизнь» №2, 2012

Все сознают, что нормальная и полезная еда — есть еда с аппетитом,
еда с испытываемым наслаждением; всякая другая еда, еда по приказу,
по расчету, признается уже в большей или меньшей степени злом.
И. П. Павлов

реакция при жарке мяса. Смотреть фото реакция при жарке мяса. Смотреть картинку реакция при жарке мяса. Картинка про реакция при жарке мяса. Фото реакция при жарке мяса

Химия богата именными реакциями, их более тысячи. Но большинство из них мало о чем скажут человеку, далекому от химии, они для тех, кто понимает. Однако в этом богатом перечне есть одна реакция, с которой все мы сталкиваемся каждый день — всякий раз, когда подходим к плите, чтобы приготовить что-нибудь вкусненькое, или пьем утренний кофе с бутербродом, или пиво вечером с друзьями. Речь идет о реакции Майара, которой в этом году исполняется сто лет. Во Франции в Нанси даже планируют провести юбилейный международный симпозиум, посвященный этой реакции.

За что такие почести? Чем она так примечательна? Да тем, что вездесуща и хорошо знакома каждому. Образование гумуса почв, угля, торфа, сапропеля, лечебных грязей происходит благодаря этой реакции. Но говорить мы будем о куда более привычных и привлекательных вещах — о незабываемом аромате свежезаваренного кофе, испеченного хлеба и жареного мяса, о золотистой поджаристой корочке на буханке и отбивной, об изумительном вкусе этих продуктов. Потому что все перечисленное — это результат реакции Майара.

Первая отбивная и революция

Сложно представить жизнь современного человека без кулинарии, а кулинарию без жарки, варки и выпечки, хотя все прочие живые существа обходятся без термической обработки пищи. Есть данные, что уже синантропы (Homo erectus pekinensis) использовали огонь, а современный Homo sapiens готовил на огне, что называется, с рождения. Так что любовь к жареному и вареному сформировалась очень давно. Но что заставило первобытного человека сунуть пищу в огонь, а потом съесть ее? И почему потом все начали есть обработанную пищу?

Вряд ли мы узнаем, когда и как это произошло. Видимо, по каким-то причинам сырое мясо попало в костер, зажарилось, а наши предки просто не смогли удержаться, чтобы не положить ароматные кусочки в рот. Понятно, что жареный кусочек по вкусу превзошел сырой даже без соли, кетчупа и приправ. Впрочем, понятно это только небиологам. В соответствии с теорией эволюции вкусно должно быть то, что полезно, что содержит ценные компоненты (избыток сладкого вреден, однако нашим предкам этот избыток не грозил). Почему вкусным кажется жареное — это нетривиальный вопрос. Может быть, как раз потому, что приготовленное легче усваивается и вкусовые рецепторы это чувствуют. И вскоре приготовленную пищу стали считать сакральной, «освященной огнем», ведь во время жертвоприношения, когда на огне сжигали потенциальную еду, ее часть в виде дыма возносилась в дар богам.

Интересно, что, если б нынешние человекообразные обезьяны умели жарить и парить, они непременно бы этим занимались. Антропологи Ричард Ранэм из Гарварда и Виктория Уоббер из Института эволюционной антропологии Макса Планка установили, что шимпанзе, бонобо, гориллы и орангутаны предпочитают приготовленную пищу сырой, будь то мясо, морковь или бататы. В чем тут дело — в мягкости готового продукта, его лучшей перевариваемости или его лучшем вкусе — непонятно. Хотя, как мы знаем, домашние животные тоже с удовольствием употребляют «человеческую» еду.

Так или иначе, огонь, сковородки, вертела и кастрюли стали главными инструментами поваров и хозяек, а вкусная теплая еда — одним из самых доступных удовольствий. Как писал Джером К. Джером, «чистая совесть дает ощущение удовлетворенности и счастья, но полный желудок позволяет достичь той же цели с большей легкостью и меньшими затратами».

Однако такой способ приготовления пищи породил куда более значимые, глобальные последствия. Существует любопытная теория, согласно которой термическая обработка пищи повлекла за собой антропогенетическую революцию и послужила отправным пунктом в культурном становлении человека. Наши предки были всеядными животными. Это давало несомненное эволюционное преимущество, поскольку разнообразие потребляемых продуктов было велико, но имело и минусы: сырая грубая пища усваивалась плохо, поэтому приходилось много есть, тратить много времени на добывание пищи. Специалисты подсчитали, что шимпанзе расходует на потребление пищи несколько часов в сутки, а современный человек — немногим более часа (долгие сидения в ресторанах и барах не в счет, здесь основное время уходит на общение). Получается, что термическая обработка пищи, резко повысив КПД переваривания, сократила потребность в ресурсах и подарила нашим предкам свободное время и энергию, которые могли быть затрачены на размышления, познание мира, творчество, создание орудий труда. Иными словами, приготовление пищи дало Homo sapiens возможность стать действительно разумным существом.

О том, как сахара, жиры и белки встречаются на сковородке

Стоит только представить хрустящую золотистую корочку на хорошо прожаренном мясе или буханке свежего хлеба, как начинают течь слюнки. Почему жареная еда такая вкусная и привлекательная на вид?

реакция при жарке мяса. Смотреть фото реакция при жарке мяса. Смотреть картинку реакция при жарке мяса. Картинка про реакция при жарке мяса. Фото реакция при жарке мяса

В молекулах природных жиров, триглицеридов (сложные эфиры глицерина и одноосновных жирных кислот) также обязательно присутствуют карбонильные группы.

реакция при жарке мяса. Смотреть фото реакция при жарке мяса. Смотреть картинку реакция при жарке мяса. Картинка про реакция при жарке мяса. Фото реакция при жарке мяса

Уязвимы они потому, что перечисленные группы даже в составе белковой молекулы легко вступают в реакцию с карбонильной группой углеводов, альдегидов и липидов. (У других аминокислот аминогруппа вступает в реакцию, только если эта аминокислота свободная или концевая в полипептидной цепи.) Нужна лишь повышенная температура, огонь или плита. Эта реакция известна в пищевой химии как реакция сахароаминной конденсации, или как реакция Майара.

реакция при жарке мяса. Смотреть фото реакция при жарке мяса. Смотреть картинку реакция при жарке мяса. Картинка про реакция при жарке мяса. Фото реакция при жарке мяса

История ее открытия — запутанное дело. Считается, что Майар был первым, кто обнаружил активное взаимодействие сахаров с аминокислотами. Однако справедливости ради следует отметить, что впервые подобную реакцию наблюдали П. Брандес и Ц. Штоэр в 1896 году, нагревая сахар с аммиаком.

В 1912 году молодой французский врач и химик Луи Камилл Майар начал изучать взаимодействие между аминокислотами и пищевыми сахарами, глюкозой и фруктозой. На исследование его вдохновило желание отыскать возможные пути синтеза полипептидов. В течение нескольких часов он кипятил водные растворы сахара или глицерина с аминокислотами и обнаружил, что в реакционной смеси образуются некие сложные соединения желто-коричневого цвета. Ученый принял их за пептиды и поспешил опубликовать результаты в «Compte Rendu de I’Academie des Sciences». Однако это был тот случай, когда исследователь выдал желаемое за действительное — дело в науке обычное. Никакие экспериментальные данные не подтверждали это чисто умозрительное заключение. К чести Майара, он это понял, продолжил исследования и уже в следующем, 1913 году обнаружил большое сходство образующихся коричневых пигментов с гуминовыми веществами почвы. Это были не пептиды, а что-то другое.

Эстафету исследований в этом направлении подхватили российские ученые из лаборатории физиологии растений Петербургского университета. Вскоре после Майара, в 1914 году, С. П. Костычев и В. А. Бриллиант описали продукты, образующиеся в реакции между аминокислотами и сахарами в дрожжевом автолизате — продукте самопереваривания дрожжевых клеток. Русские ученые активно исследовали образование «новых азотистых соединений», окрашивающих раствор в темно-бурый цвет при добавлении глюкозы или сахарозы к дрожжевому автолизату, и доказали, что материалом для синтеза служат сахар и аминокислоты, которые с легкостью реагируют без вмешательства ферментов.

Из всех исследователей, занимавшихся этой проблемой, основные результаты все же были получены французским ученым, установившим, что взаимодействие кетогруппы сахара с аминогруппой аминокислоты происходит в несколько стадий. Поэтому сахароаминная реакция известна под именем реакции Майара. С 1910 по 1913 год французский ученый опубликовал около 30 сообщений, которые легли в основу его докторской диссертации «Генезис белков и органических материалов. Действие глицерина и сахаров на аминокислоты».

Но, как это часто бывает в науке, открытие Майара не получило должного признания при его жизни. Только в 1946 году ученые снова заинтересовались этой реакцией. И сегодня о реакции Майара мы знаем уже очень многое. Прежде всего это не единичная реакция, а целый комплекс процессов, которые протекают последовательно и параллельно без участия ферментов и придают реакционной массе коричневый цвет. Главное, чтобы в реакционной смеси присутствовали карбонильные группы (в составе сахаров, альдегидов или жиров) и аминогруппы (белки). Понятно, что такой букет реакций приводит к образованию многочисленных продуктов различного строения, которые в научной литературе обозначаются термином «конечные продукты гликирования». В эту группу входят и алифатические альдегиды и кетоны, и гетероциклические производные имидазола, пиррола и пиразина. Именно эти вещества — продукты сахароаминной конденсации — ответственны за формирование цвета, аромата и вкуса продуктов, подвергнутых термической обработке. Эта реакция ускоряется с повышением температуры и поэтому интенсивно протекает при варке, жарке и выпечке.

Меланоидины: добро и зло

О том, что реакция Майара прошла, можно судить по золотисто-коричневой корочке на хлебе, зажаренных рыбе, мясе, по коричневому оттенку высушенных фруктов. Цвет термически обработанному продукту придают темноокрашенные высокомолекулярные вещества меланоидины (от греческого «меланос», что означает «черный»), которые образуются на последней стадии реакции Майара. Однако цвет стандартных меланоидинов — не черный, а красно-коричневый или темно-коричневый. Меланоидины образуют черные пигменты, подобные гуминовым веществам, лишь в том случае, если огонь был слишком силен или вы забыли о жарящейся на сковородке картошке, пироге в духовке и безнадежно сожгли их. Сам же термин «меланоидины» в 1897 году предложил О. Шмидеберг. (Кстати, «Химия и жизнь» однажды уже обращалась к теме меланоидинов; см. 1980, № 3.)

Кофе, какао, пиво, квас, десертное вино, хлеб, жареные мясо и рыба. Пока мы пьем и едим все это, реакция Майара и ее продукты, меланоидины, с нами. Мы потребляем около 10 г меланоидинов каждый день, поэтому так важно знать об их пользе и вреде.

По химической сути меланоидины — это широкий спектр нерегулярных полимеров разнообразного строения, включая гетероциклические и хиноидные структуры, с молекулярной массой от 0,2 до 100 тысяч дальтон. Механизм их образования достаточно сложен и до конца не изучен — слишком уж много промежуточных продуктов, которые взаимодействуют между собой и с исходными веществами.

Образование меланоидинов сопровождается появлением множества ароматических веществ: фурфурола, оксиметилфурфурола, ацетальдегида, формальдегида, изовалерианового альдегида, метилглиоксаля, диацетила и других. Именно они придают незабываемый, аппетитный аромат свежеиспеченному хлебу, плову, шашлыку. Еще в 1948 году создатель нашей лаборатории в Институте биохимии им. А. Н. Баха В. Л. Кретович (впоследствии член-корреспондент РАН) и Р. Р. Токарева обнаружили, что в растворах глюкозы в присутствии аминокислот лейцина и валина образуются специфические тона корки ржаного хлеба, а в присутствии глицина — карамельный аромат. Чем не способ получения вкусовых и ароматизирующих добавок?

Традиционные рецепты приготовления блюд и напитков включают стадии обработки пищи, на которых образуются меланоидины. Например, темные сорта пива своим насыщенным цветом обязаны меланоидинизированному солоду. А вкусовые добавки и ароматизаторы — это готовые продукты реакции Майара, которые получают отдельно и добавляют в продукты и напитки в качестве естественных красителей и усилителей вкуса. Ароматизаторы и приправы для фастфуда — того же происхождения. Например, пищевую добавку с ароматом тушеной грудинки получают микроволновой сушкой ферментативного гидролизата мяса говядины.

Однако вертится на языке вопрос — а не опасны ли эти вещества? Ведь только и слышишь: не ешьте жареного, в поджаристой корочке содержится всякая канцерогенная дрянь. Давайте разберемся.

Сегодня в научной литературе накоплено огромное количество данных о полезных свойствах меланоидинов — антиоксидантных, антимикробных, иммуномодулирующих, а также об их способности связывать ионы тяжелых металлов. Впервые антиоксидантная активность продуктов реакции Майара была обнаружена в 1961 году в экспериментах с вареным мясом. Затем было показано, что вареное мясо ингибирует перекисное окисление липидов, а в роли собственно ингибиторов выступают меланоидины и мальтол, образующиеся в говядине при варке.

Сегодня ученые, исследующие природу антиоксидантной активности меланоидинов, предполагают, что она связана со структурой этих веществ, которые содержат систему сопряженных двойных связей в гетероциклических и хиноидных звеньях.

реакция при жарке мяса. Смотреть фото реакция при жарке мяса. Смотреть картинку реакция при жарке мяса. Картинка про реакция при жарке мяса. Фото реакция при жарке мяса

Еще одно достоинство — антимикробная активность. В недавно опубликованной статье в журнале «Food & Function» (Ulla Mueller et al. «Food & Function»., 2011, vol. 2, 265–272) антимикробное действие меланоидинов кофе связывают с образованием в ходе реакции Майара перекиси водорода (H2O2), подавляющей рост бактерий Escherichia coli и Listeria innocua.

Исследование меланоидинов кофе, развернувшееся в последние годы, подталкивает ученых к мысли, что они могут уменьшать риск заболевания раком. Кроме того, они усиливают синтез ферментов семейства глютатион-S-трансферазы, которые обезвреживают различные ксенобиотики (Somoza V. et al. «Molecular Nutrition & Food Research». 2005, 49, 663–672). А группа ученых из Кореи, Японии и Германии в экспериментах на крысах показала, что аромат жареных кофейных зерен (результат реакции Майара) изменяет работу некоторых генов и при этом в мозгу синтезируются белки, снижающие последствия стресса из-за лишения сна. Таким образом, научно доказано, что просыпаться на запах кофе полезно для мозга, а потому и приятно. Впрочем, это вовсе не означает, что кофе надо пить с утра и до вечера. Руководитель исследований невролог Йосинори Масуо из Научно-исследовательского центра технологий здравоохранения (Япония) считает, что можно просто понюхать кофе, вместо того чтобы пить (Han-Seok Seo et al. «Journal of Agricultural and Food Chemistry». 2008, 56 (12), 4665–4673).

Благодаря полезным свойствам меланоидины нашли применение не только в кулинарии и пищевой химии. В народной медицине с незапамятных времен используют целебные свойства этих веществ. Отвар ржаных колосьев применяют для лечения заболеваний органов дыхания как отхаркивающее мягчительное средство; припарки из ячменного солода рекомендуют при воспалениях кожи и геморрое; отварами ячменного зерна лечат заболевания желудочно-кишечного тракта, почек, мочевых путей и нарушения обмена веществ. В России XIX века был популярен так называемый госпитальный квас, который входил в рацион каждого солдата, выздоравливающего после ранения, для поднятия сил. Видимо, отсюда и поговорка «Русский квас много народу спас».

А что сегодня? Наружное антисептическое средство для лечения кожных заболеваний — «жидкость Митрошина» — представляет собой концентрат меланоидинов, получаемый термической обработкой овса, пшеницы и ржи. Препарат под названием «Холеф» (фехолин), густой экстракт из пшеничных зародышей, разрешен к применению для лечения больных с различными формами прогрессивной мышечной дистрофии. В Научно-практическом центре по животноводству Национальной академии наук Республики Беларусь получили опытную партию кормовой антиоксидантной добавки «Эколин-1», которая представляет собой композицию из гидролизатов ростков солода и торфа. В Ставропольском политехническом институте из отходов молочного производства сделали препарат «ПВ», рекомендованный для широкого применения в растениеводстве и животноводстве в качестве биостимулятора. К сожалению, все эти препараты выпускают локально и малыми партиями

Но вернемся к меланоидинам, которые мы едим. Они, надо признать, плохо расщепляются пищеварительными ферментами и не всасываются в желудочно-кишечном тракте. Казалось бы, минус? Не будем торопиться. Меланоидины выполняют ту же функцию, что и пищевые волокна, улучшают пищеварение и стимулируют рост бифидобактерий, то есть обнаруживают свойства пребиотиков. А это уже скорее плюс.

И все-таки откуда разговоры о канцерогенах? Дело в том, что при слишком высоких температурах в ходе реакции Майара могут образовываться действительно токсичные или канцерогенные вещества. Например, акриламид появляется при запекании или жарке выше 180°C, когда происходит термическое разложение меланоидинов. Вот почему пережаривать не стоит. Но что интересно: исследователи выяснили, что некоторые продукты реакции Майара стимулируют образование ферментов, участвующих в связывания токсинов, в том числе и акриламида. А в модельных экспериментах было показано, что высокомолекулярные меланоидины подавляют образование канцерогенных N-нитрозаминов (Kato H. et al. «Agricultural and Biological Chemistry». 1987, vol. 51 (5), pp. 1333–1338).

Конечно, к минусам можно приписать и то, что реакция Майара снижает биологическую ценность белков, поскольку аминокислоты, особенно лизин, треонин, аргинин и метионин, которых чаще всего недостает в организме, после соединения с сахарами становятся недоступными для пищеварительных ферментов и, следовательно, не усваиваются. Но, согласитесь, стоит пожертвовать небольшой толикой аминокислот ради аппетитного вида, аромата и вкуса еды. Ведь без этих факторов, согласно И. П. Павлову, полноценное переваривание пищи невозможно. Еда должны быть вкусной!

Чтобы оценить вред или пользу меланоидинов, необходим комплексный подход к проблеме, учитывающий все факторы и детали, часто взаимоисключающие. Сделать это трудно. Но есть другой путь. Сегодня для реакции Майара найдены катализаторы и ингибиторы, мы знаем, как влияют рН среды, температура, влажность, соотношение компонентов на ход этого процесса и спектр образующихся веществ. С этими параметрами обычно считаются при производстве пищевых продуктов. Иными словами, реакция Майара становится управляемой, поэтому вполне возможно получать в процессе кулинарной обработки стандартные продукты, только с полезными для организма свойствами.

Загар, тайнопись и плащаница

С реакцией Майара мы можем встретиться не только на кухне. Если вы используете средства для автозагара (намазался кремом и без всякого солнца стал коричневым), то вы наблюдаете эту реакцию на своей коже. Действующее начало автозагара — дигидроксиацетон, получаемый из сахарной свеклы и сахарного тростника, а также ферментацией глицерина. Дигидроксиацетон или его производное эритрулоза вступают в реакцию с аминокислотами белков кожного кератина, в результате чего образуются меланоидины, похожие на естественный пигмент кожи — меланин. В течение нескольких часов по мере образования меланоидинов кожа приобретает цвет натурального загара. Этой процедурой достаточно часто пользуются культуристы и фотомодели, которым нужно быстро приобрести красивый цвет кожи.

А вот еще одно старое применение реакции Майара. Помните детский рассказ Михаила Зощенко «Иногда можно кушать чернильницы» о том, как В. И. Ленин, чтобы перехитрить надзирателей, писал молоком революционные тексты на страницах обычных художественных книг? Молоко — классические невидимые (симпатические) чернила. Чтобы проявить текст, написанный молоком, достаточно нагреть бумагу с посланием над свечой или прогладить утюгом. Невидимый текст станет видимым, коричневым. Что это, как не реакция Майара — взаимодействие белков молока с молочным сахаром лактозой! Кстати, на роль симпатических чернил подойдут любые доступные вещества, содержащие карбонильные и аминные группы, например слюна, пот, сок лука и многое другое.

В итальянском городе Турине, в соборе Святого Иоанна Крестителя, хранится одна из самых почитаемых и загадочных христианских реликвий — Туринская плащаница, льняное полотно, в которое, по преданию, Иосиф из Аримафеи завернул тело Иисуса Христа после его снятия с креста. На этом полотне неведомым образом запечатлелись лик и тело Христа. Причина возникновения нечеткого желтовато-коричневого отпечатка остается и поныне загадкой (см.: Верховский Л. И. «Химия и жизнь», 1991, № 12; Левшенко М. Т. «Химия и жизнь», 2006, № 7). Есть несколько версий, за счет каких химических реакций получилось изображение. Однако камнем преткновения остается тот факт, что коричневый цвет находится только на поверхности волокон, остающихся внутри непрокрашенными. Очень похоже, что мы имеем дело с сахароаминной реакцией.

Химики Раймонд Роджерс из Национальной лаборатории Калифорнийского университета в Лос-Аламосе и Анна Арнольди из Миланского университета попытались в эксперименте воссоздать способ окраски полотна за счет сахароаминной реакции. Специально для этого эксперимента была изготовлена льняная ткань по технологии, описанной 2000 лет назад Плинием Старшим. Для осуществления реакции Майара, как вы уже знаете, необходимы сахар и аминогруппы. Откуда на полотне сахар? Дело в том, что нити, из которых делали ткань, покрывали крахмалом, защищая их от повреждений. Готовую ткань отмывали в экстракте мыльнянки лекарственной (Saponaria officinalis), которая содержит сапонины — поверхностно-активные вещества. Они гидролизуют полисахарид крахмал до моно- и олигосахаридов: галактозы, глюкозы, арабинозы, ксилозы, фукозы, рамнозы и глюкуроновой кислоты. Поскольку ткань сушили на солнце, то вещества из промывочных вод концентрировались на поверхности волокон.

Меланоидины у колыбели жизни

Учитывая легкость, с которой протекает реакция Майара, можно предположить, что на заре возникновения жизни на Земле, в пребиотической гидросфере, то есть в первичном бульоне, взаимодействие сахаров с аминокислотами (альдегидов с аминами) шло активно и повсеместно. А это, в свою очередь, приводило к образованию меланоидиновых полимеров. Впервые мысль о том, что абиогенно образующиеся меланоидины могут быть прототипом современных коферментов, высказали Д. Кеньон и Г. Штейнман в 1969 году. И это предположение было сделано не случайно.

Дело в том, что в состав меланоидинов входят структуры с сопряженными двойными связями, придающие полимерам электрон-транспортные свойства. Поэтому меланоидиновые матрицы могут имитировать некоторые типичные биохимические реакции, протекающие в клетках: оксидо-редуктазные, гидролазные, синтазные и др. Кроме того, эти полимеры способны связывать тяжелые металлы, которые играют важную роль в функционировании многих ферментов. Вот почему образование подобных полимеров могло послужить отправной точкой в формировании основных типов биохимических реакций. А. Ниссенбаум, Д. Кеньон и Дж. Оро в 1975 году высказали гипотезу, что меланоидины — это протоферментные системы, игравшие роль матрицы в процессах зарождения жизни до возникновения систем с более высокой специфичностью.

В Институте биохимии им. А. Н. Баха РАН сотрудники лаборатории эволюционной биохимии на протяжении многих лет моделируют процессы предбиологической эволюции и исследуют роль меланоидиновых пигментов в усложнении углеродсодержащих соединений. Кандидат биологических наук Т. А. Телегина с коллегами в этих экспериментах доказала, что меланоидины обладают каталитической активностью, в частности содействуют образованию пептидных связей между аланинами. Меланоидиновые пигменты наносили на силикагель и помещали в кварцевую колонку, облучаемую ультрафиолетом, через которую циркулировал раствор аланина. В результате были получены ди-, три- и тетрааланиновые пептиды. Причем их концентрация оказалась в десять раз выше концентрации диаланина, который получали в эксперименте с немодифицированным силикагелем. Этот результат показал преимущество меланоидиновых матриц над неорганическими в процессе абиогенеза.

Реакция Майара и карбонильный стресс

Наш рассказ о реакции Майара и ее продуктах был бы неполным, если бы мы умолчали о том, что эта реакция протекает и в организме человека. Впервые на это обратили внимание уже упоминавшиеся русские ученые П. А. Костычев и В. А. Бриллиант. В отличие от Майара они проводили сахароаминную реакцию при более низких температурах, 30–55°С, и тогда предположили, что она, возможно, протекает и в клетках. Вот что они писали в своей статье в «Известиях Императорской Академии наук» в 1916 году: «Таким образом, аминокислоты реагируют с сахаром даже без вмешательства ферментов. (. ) При современном состоянии науки было бы, конечно, совершенно произвольным отрицание за такими свободно происходящими реакциями физиологического значения, особенно если принять во внимание, что условия, необходимые для осуществления реакции между сахаром и аминокислотами, легко могут иметь место в протоплазме живых клеток, так как там вполне возможны концентрации участвующих в реакции веществ».

Действительно, теперь доподлинно известно, что эта реакция протекает и в организме человека, способствуя развитию некоторых патологий. Сейчас внимание исследователей приковано к гликированию — неферментативной модификации биологических макромолекул по реакции Майара, когда с белками взаимодействуют активные карбонильные соединения, накапливающиеся при перекисном окислении липидов и при диабете.

Из-за накопления активных карбонильных соединений, которое происходит по мере старения или при диабете, развивается так называемый карбонильный стресс. В первую очередь страдают, то есть гликируются, долгоживущие белки: гемоглобины, альбумины, коллаген, кристаллины, липопротеиды низкой плотности. Последствия самые неприятные. Например, гликирование белков мембраны эритроцита делает ее менее эластичной, более жесткой, в результате чего ухудшается кровоснабжение тканей. Из-за гликирования кристаллинов мутнеет хрусталик и, как следствие, развивается катаракта. Модифицированные таким образом белки мы можем обнаружить, а значит, они служат маркерами атеросклероза, сахарного диабета, нейродегенеративных заболеваний. Сегодня одна из фракций гликированного гемоглобина — в числе основных биохимических маркеров диабета и сердечно-сосудистых заболеваний. Снижение уровня на 1% уменьшает риск каких-либо осложнений при диабете на 20%.

У себя в лаборатории, в Институте биохимии им. А. Н. Баха, мы разработали экспериментальную систему, которая моделирует условия карбонильного стресса. В качестве активного карбонильного соединения мы использовали метилглиоксаль. Оказалось, что при взаимодействии лизина с метилглиоксалем получаются свободнорадикальные продукты, способные восстанавливать окисленный гемоглобин. Благодаря этому оксид азота (NO) более эффективно связывается с железом гемовой группы, то есть происходит нитрозилирование гемоглобина. В некоторых случаях образуется нитригемоглобин, причем эти процессы могут происходить и непосредственно в крови, например, у больных диабетом. Особенности функционирования таких модифицированных гемоглобинов еще предстоит изучить.

Кстати, из-за образования нитримиоглобина может происходить так называемое нитритное позеленение колбасы или ветчины, если нарушена технология обработки мяса нитритом натрия (пищевая добавка Е250). Хотя обычно ее добавляют для придания мясным продуктам аппетитного розового цвета (не путать с позеленением, вызванным разрушением гемовой группы в результате обычной порчи продукта!).

Рассказ о реакции Майара и меланоидинах подошел к концу. Хотя, возможно, это, как говорил Козьма Прутков, начало того конца, которым заканчивается начало. В статье лишь несколькими штрихами обозначена «вездесущность» реакции Майара, однако мы надеемся, что у читателя сложилось первое представление о важности процессов, протекающих между сахарами и аминокислотами в природе.

Автор благодарит профессора А. Ф. Топунова и доктора биологических
наук К. Б. Шумаева за помощь при подготовке и написании статьи.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *