меня вопрос мучает как устроен кожух индукционной тигельной печи
Принцип работы индукционных печей. Принцип индукционного нагрева
ПРИНЦИП РАБОТЫ ИНДУКЦИОННЫХ ПЕЧЕЙ. ПРИНЦИП ИНДУКЦИОННОГО НАГРЕВА
Принцип индукционного нагрева заключается в преобразовании энергии электромагнитного поля, поглощаемой электропроводным нагреваемым объектом, в тепловую энергию.
В установках индукционного нагрева электромагнитное поле создают индуктором, представляющим собой многовитковую цилиндрическую катушку (соленоид). Через индуктор пропускают переменный электрический ток, в результате чего вокруг индуктора возникает изменяющееся во времени переменное магнитное поле. Это — первое превращение энергии электромагнитного поля, описываемое первым уравнением Максвелла.
Нагреваемый объект помещают внутрь индуктора или рядом с ним. Изменяющийся (во времени) поток вектора магнитной индукции, созданной индуктором, пронизывает нагреваемый объект и индуктирует электрическое поле. Электрические линии этого поля расположены в плоскости, перпендикулярной направлению магнитного потока, и замкнуты, т. е. электрическое поле в нагреваемом объекте носит вихревой характер. Под действием электрического поля, согласно закону Ома, возникают токи проводимости (вихревые токи). Это — второе превращение энергии электромагнитного поля, описываемое вторым уравнением Максвелла.
В нагреваемом объекте энергия индуктированного переменного электрического поля необратимо переходит в тепловую. Такое тепловое рассеивание энергии, следствием чего является нагрев объекта, определяется существованием токов проводимости (вихревых токов). Это — третье превращение энергии электромагнитного поля, причем энергетическое соотношение этого превращения описывается законом Ленца—Джоуля.
Описанные превращения энергии электромагнитного поля дают возможность:
1) передать электрическую энергию индуктора в нагреваемый объект, не прибегая к контактам (в отличие от печей сопротивления)
2) выделить тепло непосредственно в нагреваемом объекте (так называемая «печь с внутренним источником нагрева» по терминологии проф. Н. В. Окорокова), в результате чего использование тепловой энергии оказывается наиболее совершенным и скорость нагрева значительно увеличивается (по сравнению с так называемыми «печами с внешним источником нагрева»).
На величину напряженности электрического поля в нагреваемом объекте оказывают влияние два фактора: величина магнитного потока, т. е. число магнитных силовых линий, пронизывающих объект (или сцепленных с нагреваемым объектом), и частота питающего тока, т. е. частота изменений (во времени) магнитного потока, сцепленного с нагреваемым объектом.
Это дает возможность выполнить два типа установок индукционного нагрева, которые различаются и по конструкции и по эксплуатационным свойствам: индукционные установки с сердечником и без сердечника.
По технологическому назначению установки индукционного нагрева подразделяют на плавильные печи для плавки металлов и нагревательные установки для термической обработки (закалки, отпуска), для сквозного нагрева заготовок перед пластической деформацией (ковкой, штамповкой), для сварки, пайки и наплавки, для химико-термической обработки изделий и т. д.
По частоте изменения тока, питающего установку индукционного нагрева, различают:
1) установки промышленной частоты (50 Гц), питающиеся от сети непосредственно или через понижающие трансформаторы;
2) установки повышенной частоты (500-10000 Гц), получающие питание от электромашинных или полупроводниковых преобразователей частоты;
3) высокочастотные установки (66 000-440 000 Гц и выше), питающиеся от ламповых электронных генераторов.
Установки индукционного нагрева с сердечником
В плавильной печи (рис. 1) цилиндрический многовитковый индуктор, изготовленный из медной профилированной трубки, насаживают на замкнутый сердечник, набранный из листовой электротехнической стали (толщина листов 0,5 мм). Вокруг индуктора размещают огнеупорную керамическую футеровку с узким кольцевым каналом (горизонтальным или вертикальным), где находится жидкий металл. Необходимым условием работы является замкнутое электропроводное кольцо. Поэтому невозможно расплавить отдельные куски твердого металла в такой печи. Для пуска печи приходится в канал заливать порцию жидкого металла из другой печи или оставлять часть жидкого металла от предыдущей плавки (остаточная емкость печи).
Рис.1. Схема устройства индукционной канальной печи: 1 — индикатор; 2 — металл; 3 — канал; 4 — магнитопровод; Ф — основной магнитный поток; Ф1р и Ф2р — магнитные потоки рассеяния; U1 и I1 — напряжение и ток в цепи индуктора; I2 — ток проводимости в металле
В стальном магнитопроводе индукционной канальной печи замыкается большой рабочий магнитный поток и лишь небольшая часть полного магнитного потока, создаваемого индуктором, замыкается через воздух в виде потока рассеяния. Поэтому такие печи успешно работают на промышленной частоте (50 Гц).
В настоящее время существует большое число типов и конструкций таких печей, разработанных во ВНИИЭТО (однофазные и многофазные с одним и несколькими каналами, с вертикальным и горизонтальным закрытым каналом разной формы). Эти печи применяют для плавки цветных металлов и сплавов со сравнительно низкой температурой плавления, а также для получения высококачественного чугуна. При плавке чугуна печь используют либо в качестве копильника (миксера), либо в качестве плавильного агрегата. Конструкции и технические характеристики современных индукционных канальных печей приведены в специальной литературе.
Установки индукционного нагрева без сердечника
В плавильной печи (рис. 2) расплавляемый металл находится в керамическом тигле, помещенном внутрь цилиндрического многовиткового индуктора. Индуктор изготовляют из медной профилированной трубки, через которую пропускают охлаждающую воду. Узнать подробнее о конструкции индуктора можно здесь.
Отсутствие стального сердечника приводит к резкому увеличению магнитного потока рассеяния; число магнитных силовых линий, сцепляемых с металлом в тигле, будет крайне мало. Это обстоятельство требует соответствующего увеличения частоты изменения (во времени) электромагнитного поля. Поэтому для эффективной работы индукционных тигельных печей приходится питать их токами повышенной, а в отдельных случаях и высокой частоты от соответствующих преобразователей тока. Подобные печи имеют очень низкий естественный коэффициент мощности (cos φ=0,03-0,10). Поэтому необходимо применять конденсаторы для компенсации реактивной (индуктивной) мощности.
В настоящее время имеется несколько типов индукционных тигельных печей, разработанных во ВНИИЭТО в виде соответствующих размерных рядов (по емкости) высокой, повышенной и промышленной частоты, для плавки стали (тип ИСТ).
Рис. 2. Схема устройства индукционной тигельной печи: 1 — индуктор; 2 — металл; 3 — тигель (стрелками показана траектория циркуляции жидкого металла в результате электродинамических явлений)
Преимуществами тигельных печей являются следующие: выделяющееся непосредственно в металле тепло, высокая равномерность металла по химическому составу и температуре, отсутствие источников загрязнения металла (помимо футеровки тигля), удобство управления и регулирования процесса плавки, гигиеничность условий труда. Кроме этого, для индукционных тигельных печей характерны: более высокая производительность вследствие высоких удельных (на единицу емкости) мощностей нагрева; возможность плавить твердую шихту, не оставляя металл от предыдущей плавки (в отличие от канальных печей); малая масса футеровки по сравнению с массой металла, что уменьшает аккумуляцию тепловой энергии в футеровке тигля, снижает тепловую инерцию печи и делает плавильные печи этого типа исключительно удобными для периодической работы с перерывами между плавками, в частности для фасонно-литейных цехов машиностроительных заводов; компактность печи, что позволяет достаточно просто изолировать рабочее пространство от окружающей среды и осуществлять плавку в вакууме или в газовой среде заданного состава. Поэтому в металлургии широко применяют вакуумные индукционные тигельные печи (тип ИСВ).
Наряду с преимуществами у индукционных тигельных печей имеются следующие недостатки: наличие относительно холодных шлаков (температура шлака меньше температуры металла), затрудняющих проведение рафинировочных процессов при выплавке качественных сталей; сложное и дорогое электрооборудование; низкая стойкость футеровки при резких колебаниях температуры вследствие небольшой тепловой инерции футеровки тигля и размывающего действия жидкого металла при электродинамических явлениях. Поэтому такие печи применяют для переплава легированных отходов с целью снижения угара элементов.
Использованная литература:
1. Егоров А.В., Моржин А.Ф. Электрические печи (для производства сталей). М.: «Металлургия», 1975, 352 с.
Индукционное отопления своими руками
Отличия самодельного и заводского агрегата
Чтобы понять разницу, нужно взять за точку отсчета цель использования оборудования. Агрегаты домашней сборки обычно нужны для периодического применения (перерывы могут быть существенными), поэтому на первый план в них выходит минимальная себестоимость, возможность выполнения простейших манипуляций, нетребовательность в обслуживании.
В том случае, если результаты плавки используются для получения заработка, целесообразнее приобрести заводскую индукционную модель – такое оборудование способствует аккуратной работе, помогает точно соблюдать замеры, сводит к нулю вероятность попадания нежелательных примесей.Такое же оборудование сложно выполнить своими руками – сборка индуктора, выбор тигля, обустройство экрана требует профильных навыков. Создать конденсаторную батарею и генератор сможет не каждый.
Тигельная печь своими руками
Нельзя упускать из внимания эргономические показатели печей. В кустарных заготовках им уделяется минимум ресурсов, как правило, такие вариации неудобны в использовании, зачастую опасны ввиду применения подручных материалов. В заводских линейках для обеспечения комфортной работы применяются проверенные технологии, в частности, это касается конфигурации и поворотного механизма тигля
Важно, что в них созданы условия для предотвращения травматизма
Футеровка индукционных печей
Футеровка индукционных печей – что это такое и для чего она проводится? Все очень просто: футеровка необходима для защиты кожуха печи от пагубного воздействия высоких температур. Более того, она позволяет существенно сократить тепловые потери, а значит, повысить эффективность всего процесса.
В качестве материала футеровки обычно используют кварцит (модификация кремнезема). Для того чтобы футеровка успешно выполнила все свои функции, необходимо обеспечить три зоны различного состояния материала: буферную, монолитную и промежуточную. Лишь такое трехслойное покрытие сможет в полной мере осуществить защитную функцию.
Что пагубно влияет на футеровку:
низкое качество защитных материалов;
тяжелые условия эксплуатации
Индукционные тигельные печи без сердечника
Работа
индукционной тигельной печи основана
на поглощении электромагнитной энергии
проводящей садки. Садка размещена
внутри цилиндрической катушки, называемой
индуктором.
Реальные
индукционные тигельные печи имеют
механизм загрузки – выгрузки и систему
водяного охлаждения индуктора.
Тигель печи на
время плавки закрывают футерованной
крышкой. Иногда печь снабжают внешними
магнитопроводами, снижающими активные
потери в металлическом кожухе из-за
рассеяния. С электрической точки зрения,
индукционная тигельная печь представляет
собой короткозамкнутый воздушный
трансформатор, вторичной обмоткой
которого является проводящая садка.
Такое выполнение печи имеет некоторые
технологические преимущества:
Непосредственное
выделение тепловой энергии проводящей
садки повышает КПД установки, позволяет
получать высокие температуры, необходимые
для выплавки тугоплавких металлов.
Металл в тигле
интенсивно перемешивается благодаря
электродинамическому взаимодействию
электромагнитного поля индуктора и
вихревых токов в жидком металле. Это
позволяет получить металл высокого
качества.
Имеется возможность
полностью изолировать тигель от
окружающей среды и проводить плавку
под вакуумом или специальной, необходимой
по технологии атмосфере (инертные
газы).
Эти преимущества
в большей степени реализуются при
выплавке чугунов. Однако построение
печи в виде воздушного трансформатор
имеет недостатки:
Эти трансформаторы
более эффективны на высоких и повышенных
частотах. Это вынуждает во многих
случаях питать тигельные печи от
источников питания, работающих в
диапазоне от 500 до 10000 Гц.
Значительное
рассеяние воздушного трансформатора
обуславливает весьма низкое значениеcos
(0,05 – 0,2),.
Такое низкое значение cos
заставляет
как на частоте 50 Гц, так и на повышенных
частотах использовать емкостную
компенсацию реактивной мощности в
цепи индуктора. Тигельную печь вместе
с параллельной компенсирующей емкостью
часто представляют в виде параллельно
соединенных активного, индуктивного
и емкостного сопротивлений.
xL,
R – сопротивления
системы индуктор-садка.
xC
– емкостное
сопротивление компенсирующей батареи.
Величины
xL,
R в
значительной степени зависят от режима
работы печи. На них оказывают влияние
осадка, спекание, оплавление шихты,
температура в тигле, размеры кусков
шихты, равномерность ее измельчения и
др.
t1:
нагрев
твердой шихты до точки Кюри – это такая
точка, при которой теряются магнитные
свойства ферромагнетика.
t2:
дальнейший
нагрев шихты, потерявшей магнитные
свойства до полурасплавления.
Значительное
изменение сопротивлений системы
индуктор-садка во время плавки приводит
к значительным колебаниям активной и
реактивной мощности, потребляемой
печью. Это вынуждает использовать
автоматическое регулирование режима
работы печи.
Тигельная печь своими руками пошаговая инструкция
Если предстоит периодически плавить до 3 кг лома, будет достаточно производительности агрегата, сложенного из печного кирпича.
Материалы и технология
Кирпичи закладываются в основу корпуса, они служат огнеупорной защитой агрегата. Тигель в этом случае – консервная банка, с противоположных сторон верхней ее части выполняют 2 отверстия и пропускают через них стальную проволоку. Эта импровизированная ручка поможет вытащить из печи емкость со сплавом.
Для подачи воздуха домашние мастера используют фен, включенный в «холодном» режиме, к нему приматывают с помощью изоленты отрезок трубы, конструкция превращается в импровизированный воздуховод.
Схема такой тигельной печи для плавки алюминия предельно проста, ее можно выполнить и без специфических навыков. При изготовлении нельзя использовать расходные материалы, имеющие цинковое покрытие: в процессе использования могут выделяться токсичные пары.
Сборка кирпичного колодца
Первый ряд выкладывается в виде прямоугольного контура, внутреннее отверстие должно иметь такие параметры, чтобы в него поместился целый кирпич. Следующий ряд выполняется аналогично, но на одной стороне два кирпича должны образовать коридор, в который будет поступать кислород, с габаритами, соответствующими описанному выше воздуховоду.
Кирпичи в основе корпуса служат огнеупорной защитой печи
Сверху устанавливается решетка-гриль, если ее нет, можно воспользоваться металлической пластиной или крышкой с отверстиями.Решетку фиксирует третий ряд кирпичей, здесь уже не нужно оставлять проем для воздуховода.
Заготовку из фена и трубы подводят к соответствующему кирпичному ряду, включают воздуховод только после того, как насыпанный на решетку уголь будет растоплен. Интенсивность горения можно менять, переключая рычажок режимов фена. Тигель подвешивают на крайнюю кладку за проволоку, при необходимости ее можно дополнительно зафиксировать с помощью 2 кирпичей. Когда банка разогреется и слегка покраснеет, в нее можно загрузить алюминиевый лом.
Опытные мастера рекомендуют плавить металл именно в подогретом тигле, потому что сочетание холодной банки и холодного лома может привести к прогоранию емкости, в этом случае ставший жидким алюминий вытечет в огонь.
Подобная печь проста в устройстве, работа с ней не вызовет затруднений. После того, как металл расплавится, тигель аккуратно вынимают, держа за проволоку. Чтобы избежать при этом ожогов, рекомендуется использовать огнеупорные перчатки. Нужно заблаговременно убедиться в том, что все используемые компоненты не имеют в составе токсичных веществ. В процессе эксплуатации также нужно следить, чтобы в емкость не попадали брызги воды.
Устройство тигельной печи
Индукционная плавильная печь состоит из каркаса, индуктора, камеры нагрева, механизма наклона, вакуумной системы. Агрегат не имеет сердечника, в нем цилиндрический плавильный тигель размещается непосредственно в полости индуктора. Смесь исходных материалов плавится в тигле под воздействием электромагнитной энергии. Все компоненты заключаются в кожух – этот каркас обеспечивает жесткость конструкции, предотвращает рассеивание мощности.
Внешний вид индукционной плавильной печи
Более простыми являются схемы тигельных печей, функционирующих на базе твердого топлива, к примеру, на древесном угле – их легче выполнить своими руками из подручных материалов. Корпус из металлического цилиндра укрепляется огнеупорным слоем из бетона или шамотной глины с песком. В эту шахту впоследствии помещают топливо. Сверху устанавливают тигель, например, чайник, консервную банку с толстыми стенками, любую крепкую емкость из нержавейки.
В нижнем секторе шахты присутствует отверстие, предназначенное для подачи воздуха, здесь же расположено решетчатое основание. Эти элементы позволяют поддерживать процесс горения, менять температуру. Лишний воздух выводится через заслонку. Для нагнетания обычно используют трубу пылесоса или фен.
Тигельные печи, предназначенные для единовременного плавления более 10 кг алюминия, оснащают крышкой, чтобы металл равномерно прогревался. Все элементы примитивных моделей выполняют из чугуна или стали – эти материалы не деформируются при нагревании в кустарных условиях.
Футеровка индукционных печей
Футеровка индукционных печей
Футеровка индукционных тигельных печей (см. рис. 1) состоит из 6 основных элементов: тигля, подины, воротника, сливного носка, крышки печи и обмазки индуктора. Основным элементом футеровки является тигель, поэтому правильный выбор огнеупорного материала для тигля в основном обеспечивает надежность работы печи и ее технико-экономические показатели, заложенные в конструктивном решении печи.
Рис.1. Футеровка тигельной индукционной печи:
1 — огнеупорный тигель; 2 — индуктор; 3 — стальной корпус печи; 4 — магнитопровод; 5 — подина; 6 — сигнализатор износа (проедания) тигля; 7 — огнеупорное покрытие (обмазка); 8 — воротник; 9 — сливной носок; 10 — крышка.
Тигель индукционной печи может быть выполнен четырьмя различными методами: выемным (в печах малой емкости), набивным, в виде кладки из огнеупорных изделий и комбинированным, сочетающим кирпичную кладку рабочего слоя и набивку буферного слоя между индуктором и кладкой. При образовании трещин в швах кирпичной кладки буферный слой задерживает металл от прохода его к индуктору.
Каждый из перечисленных методов футеровки может быть выполнен из следующих видов огнеупорных материалов: кварцитового (кислого) SiO2; магнезитового (основного) — МgO; шпинельного — МgO + Al2O3 или MgO + Cr2O3; корундового — Al2O3; муллитового — ЗAl2O3 · 2SiO2; муллитокорундового — Al2O3 ≥ 72 %; шамотного; цирконового — Zr2 · SiO2; циркониевого — ZrO2; шамотнографитового; графитового и т. п. Все эти виды футеровки могут иметь несколько вариантов по зерновому составу и содержанию (массовые доли) различных компонентов и добавок (табл. 1), улучшающих спекание, уменьшающих объемные изменения при обжиге и увеличивающие стойкость футеровки к различным видам выплавляемых металлов и шлаков.
Таблица 1. Данные для выбора вида футеровки индукционных тигельных печей и миксеров для чугуна и стали
№ п.п. | Типы печей и элементы футеровки | Марки выплавляемых металлов | Состав оптимальной футеровки | Стойкость футеровки, мес | Заменители менее дефицитные, уменьшающие стойкость футеровки |
1 | Тигель печи промышленной частоты для чугуна ёмкостью 6-60 т | Чугун марок: СЧ15-32; СЧ50-90; СЧ21-40; СЧ28-48; ВЧ 45-5 | Первоуральский кварцит ПКМИ-97,5 с борной кислотой 1,5% (ГОСТ 9656-75) или с борным ангидридом 1% | 1-4 | Овручский молотый кварцит ПКМ-97 с добавкой 10-12% кварца молотого пылевидного марки А (маршалита) ГОСТ 9077-82 |
2 | Тигель печи промышленной частоты для чугуна и высокоуглеродистой стали ёмкостью 1-10 т | ВЧ 50-2; ВЧ 45-2 | Дистенсиллиманит — 60%, электрокорунд №200 — 40% | 1-2 | Овручский молотый кварцит ПКМ-97 с добавкой 12-15% кварца молотого пылевидного марки А |
3 | Тигель печи для чугуна и стали ёмкостью 0,1-6 т | Чугун всех марок, сталь углеродистая, низколегированная | Масса МЛ-2 | 3-8 | Местные кварцевые пески с добавкой 10-20% кварца пылевидного марки А |
4 | Выравнивающая обмазка, наносимая на индуктор тигельных печей для плавки чугуна и углеродистых сталей | Кварцит от 0 до 1 мм — 70%, высокоглинозёмистый цемент ВЦ-75 | 6-12 | Смесь муллитокорундовая с цементом для огнеупорных бетонов марки СМКЦ | |
5 | Нижнее и верхнее бетонное кольцо для печей ёмкостью более 6 т | Заполнитель ЗМКР (ГОСТ 23037-78) класс 4 — 70%, высокоглинозёмистый цемент ВЦ-70; ВЦ-75 или алюминат кальция технический — 30% | 24-36 | Огнеупорная смесь алюмосиликатная бетонная на высокоглинозёмистом цементе марок СМКРВЦ-45; СШВЦ-40 или СШЦ-5 | |
6 | Сливной носок, воротник и крышка печи | Масса муллитокорундовая МК-80 или масса корундовая гидравлическая МКН-94 ТУ 14-8-359-80 | 6-12 | Масса марки МЛ-2 или МЛ-3 | |
7 | Тигель печи для углеродистой стали ёмкостью до 6 т | Сталь инструментальная, углеродистая, хромоникелевая и др. низколегированные марки | Кислая — кварцит ПКМИ-97,5 — 89%, борная кислота 1,5% или борный ангидрид — 1%; кварц пылевидный марки А ГОСТ 9077-82 — 10%; нейтральная масса МК-80 или МК-90 | 0,5-1 | Овручский кварцит, борный ангидрид 1%, кварц пылевидный марки А — 15%, масса МЛ-2 или МЛ-3 |
8 | Тигель печи для высоколегированной стали | Высоко легированные и марганцевые стали | Магнезитовый порошок марок ПМЭ-88, ПМИ-88, ПМИ-90 фракции 4-2 мм — 10%, фракции 2-1 мм — 14%, менее 1 мм — 14%; магнезитохромитовый порошок фракции 4-2 мм — 10%, фракции 2-1 мм — 15%, менее 1 мм — 35%; плавиковый шпат — 2% | 0,3-0,5 | Порошок магнезитовый (периклазовый) марки ПМ |
9 | Тигель ёмкостью до 3 т для открытых и вакуумных печей | Высоколегированные и прецизионные сплавы | Порошок из плавленного магнезита для индукционных печей марки ПППВИ и ПППОИ-93 — II; III; IV; V; VI в соотношении 1:2:2:2:3 — 83%; электрокорунд №6 — 12-15%; плавиковый шпат или борный ангидрид — до 1,5% | 0,5-1 | — |
10 | Тигель печи для стали и никеля ёмкостью 16 т и более | Сталь всех марок и никель | Кирпич периклазовый клиновой марок Му 91-11 (12), Му 91-7 и прямой Му 91-1 ГОСТ 4689-74, буферный слой из магнезита металлургического МПМП-86 | 2-4 | Изделия корундовые плотные клиновые для индукционных печей ТУ 14-8-187-75 (Al2O3 ≥ 90%, P2O5 ≥ 1%) |
11 | Металлостойкая обмазка — для индукторов печей для стали и др. сплавов чёрных и цветных металлов | 1-й слой: кварцит молотый марки ПКМИ-97,5 от 0 до 1 мм или ПКМ — 75%; цемент ВЦ-75 — 25%; 2-й слой: асбестовая ткань АТ-2 или АТ-7 ГОСТ 6102-78; 3-й слой: порошок периклазовый спечённый молотый марки МПМП-86 — 88%, полифосфат натрия технический ГОСТ 20291-90 — 12% | 12-24 | 1-й слой: смесь порошков марки СВШЦ-3; 2-й слой: асбестовая ткань АТ-2 или АТ-7; 3-й слой: порошок периклазовый марки ПППОИ-90-1 — 88%, полифосфат натрия 12% |
Для оптимального решения в выборе того или иного вида огнеупорных материалов необходимо учитывать конкретные службы футеровки тигля, вид выплавляемого металла, а также стоимость и дефицитность огнеупора. Как показала практика, основным фактором при выборе футеровки является срок ее службы, обеспечивающих надежную работу печи в данных условиях. Технически обоснованный выбор вида и метода футеровки должен обеспечивать следующие требования:
Футеровка оказывает существенное влияние на химическую чистоту и на физико-механические свойства выплавляемого металла, например, на пластичность стали при обычных и высоких температурах, структуру, усталостную прочность, длительную жаропрочность, ползучесть, коррозийную стойкость и др. Наряду с полезными, вводимыми в ванну (тигель) легирующими добавками и раскислителями в процессе плавки образуются нежелательные примеси, которые вредно отражаются на качестве металла. Эти смеси обычно попадают в металл в виде неметаллических включений, образующихся в результате взаимодействия с поверхностью футеровки, а также из шихты или в виде оксидов металлов, получающихся при окислении расплава кислородом воздуха, вовлекаемым при движении расплавленного металла или при окислении раскислителей.
Наиболее распространенными нежелательными примесями являются кислород и его соединения в виде простых и сложных оксидов (SiO2; Al2O3; FeO; Fe2O3; Cr2O3; MgO; ZrO2; FeCr2O4; FeAl2O4; MgAl2O4), силикатов; алюмосиликатов и др. Уменьшение содержания нежелательных примесей (в том числе и неметаллических включений) — одна из основных проблем качественной металлургии [12].
Сталь, выплавляемая в основных тиглях, обладает более высокими прочностными и пластическими свойствами, чем сталь, выплавляемая в кислом тигле. Причиной этому является образование кремнекислородных включений в результате взаимодействия металла с кислой футеровкой. Включения, богатые кремнеземом, хорошо смачиваются жидким металлом, трудно удаляются из него, так как имеют пониженное поверхностное натяжение, а включения оксида магния, корунда и соединения типа шпинелей (R0 · Al2O3) плохо смачиваются металлом и быстрее удаляются из него. По понижению межфазового натяжения материалы включений располагаются в следующем порядке: α-Al2O3 (корунд); MgO · Cr2O3; MgO · Al2O3; FeO · Al2O3; алюмосиликаты и SiO2. Отсюда следует, что для получения металла с меньшим содержанием неметаллических включений наиболее эффективными являются футеровки шпинельного типа (RO · Al2O3 и RO · Cr2O3), а также химически чистые основные огнеупорные материалы с минимальным содержанием кремнезема.
Для плавки специальных сталей (12Х18Н10Т и др.) стойкой (19-25 плавок) в тиглях емкостью 8 т [13] является масса, состоящая из обожженного периклазового порошка фракции 4-2 мм (с массовой долей MgO ≥ 88 %), периклазошпинелидного порошка фракции 2-0 мм и плавленого периклаза фракции 4-0 мм (MgO ≥ 93 %) в соотношении 3:3:1. Высокую расплавоустойчивость массы обеспечивает периклаз, являющийся наиболее стойким к расплаву металлов и шлака, а также наличие периклазошпинелидного порошка, обладающего плотной структурой повышенной термостойкостью вследствие присутствия хромита в тонкомолотом состоянии.
При выборе вида футеровки необходимо учитывать склонность некоторых металлов к обменной реакции окисления с оксидами, входящими в состав футеровочных масс. Это свойство зависит от теплоты образования оксидов, которая для наиболее распространенных огнеупоров является следующей (кДж/моль) : MgO — 608, SiO2 — 435, Al2O3 — 562, Cr2O3 — 381, ZrO2 — 540,1, Fe2O3 — 276,1, ТiO2 — 456.
Из приведенных данных следует, например, что алюминий можно плавить в тиглях из оксидов магния и алюминия. Кислая футеровка будет восстанавливаться алюминием и его сплавами, поэтому кварцит не может быть применен в индукционных печах для плавки алюминиевых сплавов.
Реакции, протекающие на контакте металл—огнеупор, имеют большое значение как для правильного выбора вида футеровки печи, так и с точки зрения качества выплавляемого металла. Склонность расплавленных металлов и сплавов к окислению повышается в следующей последовательности: никель, нихром, железо, хром, кремний, титан, цирконий, алюминий, магний, а склонность огнеупоров к восстановлению уменьшается в ряду: Cr2O3; SiO2; TiO2; ZrO2; Al2O3; MgO; MgAl2O4. Контактная реакция между расплавом стали и кислой футеровкой может быть представлена следующим уравнением:
Контактные реакции взаимодействия происходят главным образом на поверхности рабочего слоя в системе жидкий металл—твердая футеpoвка с участием вовлеченного в металл кислорода воздуха. Прочность связи поверхностного слоя (фаялита) с последующими слоями футеровки ослабляется с увеличением его толщины. Затем слой фаялита уносится движущимся расплавом и всплывает наверх в виде шлака, так как его удельная масса (4,0-4,35) меньше удельной массы стали. Температура плавления фаялита 1200 °C значительно ниже температуры плавления стали и чугуна, поэтому при плавке черных металлов в кварцитовом тигле нет необходимости наводить шлаки.
Защитный шлаковый покров предотвращает окисление металла кислородом воздуха, обеспечивает его рафинирование, уменьшает содержание в нем нежелательных примесей и неметаллических включений. При плавке металла в основных огнеупорных тиглях шлаки почти не образуются, поэтому в основной тигель дают добавки, образующие шлак: плавиковый шпат, буру, известь, магнезит, известковое стекло, кварцевый песок, оксид алюминия, порошок шамота, различные соли и др. Эти материалы иногда перед началом плавки помещают на дно тигля. По мере расплавления они нагреваются, плавятся и, будучи легче металла, всплывают на поверхность, закрывая металл.
При плавке черных металлов износ футеровки чаще всего происходит равномерно в виде размывания в соответствии с 2-контурным движением металла в крупных печах промышленной частоты. В этом случае износ зависит от агрессивности различных марок металла. Ориентировочно по степени агрессивности черные металлы можно расположить в нижеследующем порядке.
При плавке стали в высокочастотных печах движение металла менее интенсивное, износ футеровки более равномерный и при прочих равных условиях стойкость футеровки выше, чем в печах промышленной частоты (рис. 2).
Рис.2. Характер износа кислой футеровки индукционной тигельной печи.
Кислую футеровку обычно применяют в печах любой емкости (до 60 т) для плавки чугуна, углеродистых, кремнистых и других сталей с перегревом металла до температуры 1450-1550 °C. Однако кислая футеровка не может быть использована при выплавке многих марок качественных сталей и сплавов, в которых строго лимитируется содержание углерода, кремния, фосфора, серы, неметаллических включений. Выгорание этих примесей значительно быстрее происходит в основной футеровке. Оксид кальция (известь), добавляемый для рафинирования стали от кремния, серы и фосфора, взаимодействует с кислой футеровкой и, не успевая соединиться с серой и фосфором металла, уходит в шлак. Кремний же частично переходит из материала кислой футеровки в сталь. Жаропрочные и тугоплавкие сплавы опасно плавить в печах с кислой футеровкой еще и потому, что температура плавления и перегрева этих металлов близка к температуре плавления кварцитов.
Стойкость кислой футеровки зависит от вида выплавляемого металла и колеблется в широких пределах от 10 до 300 плавок. При плавке чугуна стойкость футеровки из первоуральского кварцита ПКМИ-97,5 достигает 4 мес. Высокая стойкость может быть достигнута только при тщательном уходе за тиглем и ремонтах изношенной футеровки. На Горьковском автозаводе стойкость тигельных печей емкостью 10-12 т стабильно составляет 3-4 мес или 300 плавок. Плавку ведут без наведения шлаков, чугун полностью не сливают. При применении кислой футеровки в шлак нельзя добавлять плавиковый шпат CaF2 и буру Na2B4O7, так как в этом случае стойкость футеровки резко падает (до 2-3 плавок). При плавке высокомарганцевых сталей стойкость кислой футеровки также очень низка. Однако в практике футеровки тигельных индукционных печей кислая футеровка применяется чаще, чем другие виды футеровок. Причины этому следующие: а) дешевизна кварцита; б) недефицитность футеровки; в) полиморфные превращения кварца обеспечивают безусадочность рабочего слоя и плотность неспеченного буферного слоя; г) нет необходимости в наведении шлаков; д) мала вероятность образования сквозных усадочных трещин, что обеспечивает надежность работы печи; е) стабильный достаточно высокий срок службы тигля.
Учитывая указанные преимущества, высококачественную кварцитную футеровку (из шведских молотых кварцитов) с борным ангидридом в зарубежной практике применяют также для попеременной выплавки чугунов и легированных сталей в крупных тигельных индукционных печах. На одном из литейных заводов фирмы «АГ» (ФРГ) в 25-т тигельной индукционной печи промышленной частоты за 8-недельный период без смены футеровки было выплавлено 3100 т чугуна и стали. Большая часть выплавленного металла составляла коррозионностойкая хромоникелевая сталь [14].
Таблица 2. Свойства кварцитов различных месторождений
Параметр | Месторождения кварцитов | |||
Овручское | Первоуральское (гора Караульная) | Антоновское | Тарасовское | |
Химический состав, % | ||||
SiO2 | 97,0-98,3 | 98,18-99,10 | 99,21 | 96,4-99,0 |
Al2O3 | 0,46-1,71 | 0,15-0,70 | 0,24 | — |
Fe2O3 | 0,1-0,57 | 0,14-0,42 | 0,11 | 0,12-0,59 |
CaO | 0,06-0,50 | 0,08-0,50 | 0,10 | 0,19-0,76 |
MgO | 0,90-0,10 | — | 0,5 | — |
TiO2 | 0,09-0,10 | 0,1 | — | — |
R2O3 | 0,18-0,30 | 0,15 | 0,13 | — |
Огнеупорность, °C | 1770 | 1770 | 1750-1770 | 1760 |
Плотность, г/см 3 | 2,65-2,66 | 2,65-2,66 | 2,64 | 2,42-2,52 |
Пористость | 0-1,1 | 0,15-0,30 | 2-3 | 2,4-3,5 |
Массовая доля кремнезема в Первоуральском кварците выше (97,5-99 %), чем в овручском (97-98 %). Более высокая степень чистоты первоуральского кварцита обеспечивает однородность свойств материала и позволяет сократить существующие колебания в стойкости футеровки, что особенно важно при эксплуатации печей большей емкости. Первоуральский молотый кварцит марки ПКМИ-97,5 рекомендуется как оптимальный материал для кислой футеровки (см. табл. 2).
Для футеровки печей малой и средней емкости часто используют местные кварцевые пески с высоким содержанием кремнезема ( ≥ 97,5 %), для восполнения недостающих тонкомолотых фракций в футеровочную массу добавляют тонкомолотый кварцевый песок марки КП-1 или природный маршалит. Завод «Центролит» в г.Каунасе использует крупную фракцию высококачественных песков Аникшяйского рудника (Литовская ССР). Они содержат 97,68-98,67 % SiO2; 0,50-0,71 Al2O3 и 0,14-0,36 Fe2O3, огнеупорность 1730-1750 °C. Для восполнения недостающих мелких фракций в песок добавляют около 20 % естественного маршалита, поставляемого с Болотовского карьера (Челябинская обл.). Маршалит содержит 94-95 % SiO2; 2,7-2,8 % Al2O3 и 0,25 % Fe2O3.
Основную футеровку изготавливают из магнезитовых, доломитовых и известковых огнеупоров, которые имеют химически основной характер. Эти материалы отличаются высокой огнеупорностью, как правило, выше 2000 °C. Химически чистые разновидности оксида магния имеют температуру плавления 2800, а оксид кальция 2500 °C.
В настоящее время для изготовления основной футеровки открытых тигельных печей применяют спеченный и плавленый магнезит, а для футеровки вакуумных печей — плавленый магнезит с содержанием MgO > 90 %. Для компенсации усадочных процессов при образовании шпинели в футеровочную массу добавляют от 10 до 30 % электрокорунда. С этой же целью вместо электрокорунда в массу добавляют 3-4 % молотого кварцевого песка, кварцита или молотого ферросилиция в количестве до 10 %. В качестве плавней, обеспечивающих спекание футеровки, обычно добавляют плавиковый шпат CaF2 [12], который при обжиге до 1400 °C способствует росту магнезитовой массы, а при 1500-1600 °C уменьшает усадку при спекании по сравнению с другими спекающими добавками (борной кислотой, бурой, стеклом, содой, криолитом).
Срок службы основной футеровки колеблется в зависимости от марок выплавляемой стали и от последовательности, с которой они выплавляются. Например, если вести подряд несколько плавок низкоуглеродистой стали, а затем несколько плавок высокомарганцевой, то футеровка пострадает значительно меньше, чем в том случае, если чередовать указанные металлы через плавку. Износ большинства составов периклазовой футеровки происходит в результате одновременного действия эрозии и коррозии, главным образом, на уровне зеркала металла. Сильно разрушается футеровка при неудовлетворительном качестве связки (мало тонких фракций, плохое спекание, дефекты набивки, разрыхление связки при спекании). Например, футеровка из магнезита и циркония имеет рост при обжиге и разрыхляется, ее шлакоустойчивость ниже, чем у магнезитовой с добавкой электрокорунда или кварцевого песка, что ограничивает ее применение.
Большое значение для стойкости футеровки имеет также чистота шихты, загружаемой для плавки. В условиях работы открытых индукционных печей завода «Электросталь» емкостью 1-1,3 т оптимальной является масса следующего состава: магнезитовый порошок 4-2 мм — 10 %; 2-1 мм — 14 %; менее 1 мм — 14 %; магнезитохромитовый порошок 4-2 мм — 10; 2-1 мм — 15 %; менее 1 мм — 35 %; плавиковый шпат менее 0,1 мм — 2 %.
Для размола компонентов массы используют, как правило, отработанный сводовый кирпич дуговых электропечей, очищенный от ошлакованных частей, пропитанных железистыми оксидами (ТУ 14-8-172-75). Применяют также магнезитовый порошок марок ПМЭ-88, ПМИ-88 по ТУ 14-8-209-76 с рассевом по фракциям 4-2 мм, 2-1 мм и мельче 1 мм или ППГ10И-90 по ТУ 14-8-149-75.
Для приготовления набивной массы составные части тщательно смешивают в лопастном смесителе или в бегунах. Срок хранения готовой массы в условиях, не допускающих увлажнения и загрязнения пылью, не ограничивается. Стойкость футеровки на печи ИСТ-1,0 составляет 40-50 плавок. В индукционных печах (для плавки стали) меньшей емкости ( ≤ 0,5 т) футеровка аналогичного состава имеет стойкость 70-90 плавок.
На малых печах (ИСТ-0,06 т) набивку тиглей производят увлажненной массой, состоящей из 49 % периклазового и 51 % периклазохромитового порошков со следующим зерновым составом смеси: 4-2 мм — 20 %; 2-1 мм — 30 %; мельче 1 мм — 50 %. Увлажненную массу перед укладкой рекомендуют выдержать под мокрой мешковиной не менее 16 ч, но не более 36 ч. Степень увлажнения массы такова, что при сжимании ее в руке комок не рассыпается, но легко разваливается при давлении пальцем.
Основная футеровка разных составов и даже из плавленого магнезита с электрокорундом имеет сравнительно низкую стойкость и не всегда обеспечивает надежную работу индукционных тигельных печей. Основная причина этого состоит в том, что все разновидности магнезитовых набивных масс, наряду с положительными свойствами (высокая огнеупорность, шлако- и металлоустойчивость), имеют ряд существенных недостатков. Главной причиной низкой стойкости основной футеровки (особенно в печах повышенной емкости > 500 кг) является неудовлетворительное ее объёмопостоянство и термостойкость. В процессе службы длительное воздействие на футеровку высоких температур, их резкие колебания, а также диффузия расплавов металла и шлака в толщину стенки тигля через постепенно развивающиеся трещины в спекшейся части футеровки приводят к более глубокому спеканию тигля, большим усадкам и к образованию глубоких трещин. Причем величина трещин тем больше, чем больше объем огнеупорного тигля. Для увеличения стойкости периклазовой футеровки в нее вводят хромит или применяют смесь периклазовых и периклазохромитовых компонентов (см. табл. 1, п.8).
Данные о продолжительности службы основной набивной футеровки в производственных условиях крайне разноречивы и имеют большие колебания (от 10-15 до 70-80 плавок). Слабым звеном в тигле является шлаковый пояс, где футеровка обильно насыщается из шлака оксидами SiO2; CaO; MgO; R2O. Массовая доля MgO в рабочей зоне шлакового пояса снижается до 21 %, Fе2O3 увеличивается до 8 %, а содержание силикатов возрастает примерно в 4 раза, огнеупорная форстеритовая связка перерождается в неогнеупорную монтичеллиуовую. При температуре расплава 1600-1640 °C при постоянном снабжении футеровки шлаками наблюдается разрушение агрегатных скоплений, а также отдельных зерен периклаза и зерен образовавшейся шпинели при обжиге футеровки. В результате чего образуется менее устойчивая структура с корродированными зернами периклаза и шпинели, разобщенными силикатными прослойками, и с отдельными участками, состоящими из менее огнеупорных силикатов. Такая структура менее износоустойчива в службе и обусловливает высокий износ шлакового пояса тигля вследствие оплавления.
Износ футеровки стен основного тигля ниже уровня шлака значительно меньше. Поступление силикатных расплавов в эти участки футеровки ограничено, вследствие чего резко различаются состав и структура после службы рабочей зоны нижней части стен тигля от структуры шлакового пояса.
Использованная литература:
1. Сасса В.С. Футеровка индукционных печей. М.: «Металлургия», 1989, 232 с.