какая кровь цветом у рыб
Какая кровь цветом у рыб
ГЛАВА I
СТРОЕНИЕ И НЕКОТОРЫЕ ФИЗИОЛОГИЧЕСКИЕ ОСОБЕННОСТИ РЫБ
КРОВЕНОСНАЯ СИСТЕМА. ФУНКЦИИ И СВОЙСТВА КРОВИ
Главным отличием кровеносной системы рыб от других позвоночных является наличие одного круга кровообращения и двухкамерного сердца, наполненного венозной кровью (за исключением двоякодышащих и кистёперых).
Сердце состоит из одного желудочка и одного предсердия и помещается в околосердечной сумке, сразу за головой, позади последних жаберных дуг, т. е. по сравнению с другими позвоночными сдвинуто вперед. Перед предсердием имеется венозная пазуха, или венозный синус, со спадающими стенками; через эту пазуху кровь поступает в предсердие, а из него – в желудочек.
Расширенный начальный участок брюшной аорты у низших рыб (акулы, скаты, осетровые, двоякодышащие) образует сокращающийся артериальный конус, а у высших рыб – луковицу аорты, стенки которой сокращаться не могут. Обратному току крови препятствуют клапаны.
Схема кровообращения в самом общем виде представлена следующим образом. Венозная кровь, заполняющая сердце, при сокращениях сильного мускульного желудочка через артериальную луковицу по брюшной аорте направляется вперед и поднимается в жабры по приносящим жаберным артериям. У костистых рыб их четыре с каждой стороны головы – по числу жаберных дуг. В жаберных лепестках кровь проходит через капилляры и, окисленная, обогащенная кислородом, направляется по выносящим сосудам (их также четыре пары) в корни спинной аорты, которые затем сливаются в спинную аорту, идущую вдоль тела назад, под позвоночником. Соединение корней аорты спереди образует характерный для костистых рыб головной круг. Вперед от корней аорты ответвляются сонные артерии.
От спинной аорты идут артерии к внутренним органам и мускулатуре. В хвостовом отделе аорта переходит в хвостовую артерию. Во всех органах и тканях артерии распадаются на капилляры. Собирающие венозную кровь венозные капилляры впадают в вены, несущие кровь к сердцу. Хвостовая вена, начинающаяся в хвостовом отделе, войдя в полость тела, разделяется на воротные вены почек. В почках разветвления воротных вен образуют воротную систему, а выйдя из них, сливаются в парные задние кардинальные вены. В результате слияния вен задних кардинальных с передними кардинальными (яремными), собирающими кровь из головы, и подключичными, приносящими кровь из грудных плавников, образуется два Кювьерова протока, по которым кровь попадает в венозный синус. Кровь из пищеварительного тракта (желудка, кишечника) и селезенки, идущая по нескольким венам, собирается в воротную вену печени, разветвления которой в печени образуют воротную систему. Собирающая кровь из печени печеночная вена впадает прямо в венозный синус (рис. 21). В спинной аорте радужной форели обнаружена эластичная связка, выполняющая роль нагнетающего насоса, который автоматически увеличивает циркуляцию крови во время плавания, особенно в мускулатуре тела. Производительность этого ‛дополнительного сердца“ зависит от частоты движений хвостового плавника.
У двоякодышащих рыб появляется неполная перегородка предсердия. Это сопровождается и возникновением ‛лёгочного“ круга кровообращения, проходящего через плавательный пузырь, превращенный в легкое.
Сердце рыб относительно очень мало и слабо, гораздо меньше и слабее, чем у наземных позвоночных. Масса его обычно не превышает 0,33–2,5%, в среднем 1 % массы тела, тогда как у млекопитающих оно достигает 4,6%, а у птиц даже 10–16%.
Кровяное давление (Па) у рыб низкое – 2133,1 (скат), 11198,8 (щука), 15998,4 (лосось), тогда как в сонной артерии лошади – 20664,6.
Невелика и частота сокращений сердца – 18–30 ударов в минуту, причем она сильно зависит от температуры: при низких температурах у рыб, зимующих на ямах, она уменьшается до 1–2 ;у рыб, переносящих вмерзание в лед, пульсация сердца на этот период прекращается.
Количество крови у рыб относительно меньше, чем у всех остальных позвоночных животных (1,1 – 7,3% от массы тела, в том числе у карпа 2,0–4,7%, сома – до 5, щуки – 2, кеты – 1,6, тогда как у млекопитающих – 6,8% в среднем).
Это связано с горизонтальным положением тела (нет необходимости проталкивать кровь вверх) и меньшими энергетическими тратами в связи с жизнью в водной среде. Вода является гипогравитационной средой, т. е. сила земного притяжения здесь почти не сказывается.
Морфологическая и биохимическая характеристика крови различна у разных видов в связи с систематическим положением, особенностями среды обитания и образа жизни. Внутри одного вида эти показатели колеблются в зависимости от сезона года, условий содержания, возраста, пола, состояния особей.
Количество эритроцитов в крови рыб меньше, чем у высших позвоночных, а лейкоцитов, как правило, больше. Это связано, с одной стороны, с пониженным обменом рыб, а с другой – с необходимостью усилить защитные функции крови, так как окружающая среда изобилует болезнетворными организмами. По средним данным, в 1 мм3крови количество эритроцитов составляет (млн. ): у приматов –9,27; копытных– 11,36; китообразных – 5,43; птиц – 1,61–3,02; костистых рыб– 1,71 (пресноводные), 2,26 (морские), 1,49 (проходные).
Количество эритроцитов у рыб колеблется в широких пределах, прежде всего в зависимости от подвижности рыб: у карпа – 0,84–1,89 млн. /мм3 крови, щуки – 2,08, пеламиды – 4,12 млн. /мм3. Количество лейкоцитов составляет у карпа 20–80, у ерша – 178 тыс. /мм3. Клетки крови рыб отличаются большим разнообразием, чем у какой-либо другой группы позвоночных. У большинства видов рыб в крови имеются и зернистые (нейтрофилы, эозинофилы) и незернистые (лимфоциты, моноциты) формы лейкоцитов.
Среди лейкоцитов преобладают лимфоциты, на долю которых приходится 80–95%, моноциты составляют 0,5–11%; среди зернистых форм преобладают нейтрофилы–13–31%; эозинофилы встречаются редко (у карповых, амурских растительноядных, некоторых окуневых).
Соотношение разных форм лейкоцитов в крови карпа зависит от возраста и условий выращивания.
Общее количество лейкоцитов в крови рыб сильно изменяется в течение года, у карпа оно повышается летом и понижается зимой при голодании в связи со снижением интенсивности обмена.
Кровь окрашена гемоглобином в красный цвет, но есть рыбы и с бесцветной кровью. Так, у представителей семейства Chaenichthyidae (из подотряда нототениевых), обитающих в антарктических моряхв условиях низкой температуры (
НазадОглавлениеДалее
Какое сердце у рыб: строение, кровь и система кровообращения
Рыба — это хладнокровное водное позвоночное, которое обитает как в солёной, так и в пресной воде. Как и млекопитающие, рыбы имеют замкнутую систему кровообращения, то есть кровь всегда находится в кровеносных сосудах, если они не повреждены. Система кровообращения у них довольно проста. Она состоит из сердца и кровеносных сосудов. Сердце представляет собой примитивную мышечную структуру, которая расположена за жабрами.
Кровеносная система рыб состоит из сердца и кровеносных сосудов
Анатомия и функционирование
Вопросом о том, какая кровь в сердце у рыб, и какое у рыб сердце, задавались многие ранние исследователи, так как считается, что двухкамерное сердце сыграло жизненно важную роль в прогрессивной эволюции четырехкамерных сердечных и сосудистых схем.
У рыб этот орган ещё называют жаберным сердцем, потому что его основной функцией является нагнетание венозной крови в брюшную аорту и в жабры, а затем в соматическую сосудистую систему, поэтому кровь в нём венозная.
Строение сердца рыб проще, чем у млекопитающих, земноводных и некоторых наземных позвоночных. Этот орган заключён в перикардиальную мембрану или перикард и состоит из четырёх частей:
Основной функцией сердца рыб является нагнетание венозной крови в брюшную аорту и в жабры
Хотя сердце этих животных состоит из четырёх частей, оно считается двухкамерным, так как четыре части сердца не образуют единого органа. Обычно они находятся один за другим. Жаберные и системные кровеносные сосуды расположены последовательно с сердцем.
Работа органа
Работа рыбьего сердца в основном зависит от двух факторов: частоты сердечных сокращений и объема удара. При каждом сердечном ритме желудочек выкачивает кровь. Объем называется ударным объёмом, а время сердечного ритма известно как частота сердечных сокращений.
Атриум рыбы заполнен всасыванием, созданным жёсткостью перикарда и окружающей ткани. Венозная кровь, возвращающаяся в атриум, сопровождается сокращением желудочка в систоле, что вызывает падение внутриперкардиального давления, которое передаётся через тонкую стенку атриума, чтобы создать аспираторный эффект или эффект фонта.
У рыб присутствует система кровообращения, при которой кровь проходит через сердце только один раз в течение каждого полного цикла. Лишённая кислорода, она из тканей организма доходит до сердца, откуда накачивается в жабры.
Газообразный обмен происходит внутри жабр, и окисленная кровь из жабр циркулирует по всему телу.
Кровь и сердечно-сосудистая система
Кровь рыб содержит плазму (жидкость) и клетки крови. Красные клетки — эритроциты содержат гемоглобин, белок, который переносит кислород по всему телу. Белые клетки составляют неотъемлемую часть иммунной системы. Тромбоциты выполняют функции, которые эквивалентны роли тромбоцитов в организме человека.
Механизм кровообращения
Хотя сердечно-сосудистая система рыб проста по сравнению с другими млекопитающими, она служит важной цели, иллюстрируя различные этапы эволюции системы кровообращения у животных. Сердечно-сосудистая система рыбы включает:
Капилляры представляют собой микроскопические сосуды, которые образуют сеть, называемую капиллярным слоем, где сливается артериальная и венозная кровь. Капилляры имеют тонкие стенки, облегчающие диффузию, процесс, через который кислород и другие питательные вещества переносятся в клетки.
Капилляры представляют собой микроскопические сосуды
Капилляры собираются в небольшие вены, называемые венулы, которые, в свою очередь, сливаются в более крупные вены. Вены переносят кровь в синусовый веноз, который похож на небольшую камеру.
Веноз синуса имеет клетки кардиостимулятора, которые отвечают за инициирование сокращений, так что кровь перемещается в тонкостенный атриум, имеющий очень мало мышц.
Атриум создаёт слабые сокращения, чтобы вливать кровь в желудочек. Желудочек — это толстостенная структура с большим количеством сердечных мышц. Она генерирует достаточное давление для прокачки кровотока по всему телу и в bulbus, небольшую камеру с эластичными компонентами.
Желудочек — это толстостенная структура с большим количеством сердечных мышц
В то время как bulbus arteriosus — это название камеры у костистых рыб, у рыб с хрящевым скелетом эта камера называется conus arteriosus. Conus arteriosus имеет много клапанов и мышц, в то время как bulbus arteriosus не имеет клапанов. Основная функция этой структуры — уменьшить пульсовое давление, создаваемое желудочком, во избежание повреждения тонкостенных жабр.
Отводный тракт к вентральной аорте состоит из трубчатого конусного артериоза, бульбуса артериоза или обоих. Конусный артериоз, обычно встречающийся у более примитивных видов рыб, сжимается, чтобы помочь кровотоку в аорту. Вентральная аорта доставляет кровь к жабрам, где она насыщается кислородом, и течёт через дорзальную аорту в остальную часть тела. (В тетраподах вентральная аорта разделена на две части: одна половина образует восходящую аорту, а другая — лёгочную артерию).
Акваловер
Аквариумистика — аквариум новичкам, аквариум любителям, аквариум профессионалам
Кровеносная система рыб. Органы кроветворения и кровообращения
Самое читаемое
Холоднокровные (температура тела зависит от температуры окружающей среды) животные, рыбы, имеют замкнутую кровеносную систему, представленную сердцем и сосудами. В отличие от высших животных рыбы имеют один круг кровообращения (за исключением двоякодышащих и кистёперых).
Сердце у рыб двухкамерное: состоит из предсердия, желудочка, венозной пазухи и артериального конуса, поочерёдно сокращающихся своими мускульными стенками. Ритмично сокращаясь, оно движет кровь по замкнутому кругу.
По сравнению с наземными животными, сердце рыб очень мало и слабо. Его масса обычно не превышает 0,33–2,5%, в среднем 1 % массы тела, тогда как у млекопитающих оно достигает 4,6%, а у птиц — 10–16%.
Слабое у рыб и кровяное давление.
Рыбы имеют и малую частоту сокращений сердца: 18–30 ударов в минуту, но при низких температурах она может уменьшиться до 1–2; у рыб, переносящих вмерзание в лед зимой, пульсация сердца в этот период вообще прекращается.
Кроме этого, рыбы имеют малое количество крови по сравнению с высшими животными.
Но все это объясняется горизонтальным положением рыбы в окружающей среде (нет необходимости выталкивать кровь наверх), а также жизнью рыбы в воде: в среде, в которой сила земного притяжения сказывается намного меньше чем на воздухе.
Кровь от сердца оттекает по артериям, а к сердцу — по венам.
Из предсердия она выталкивается в желудочек, затем в артериальный конус, а затем в большую брюшную аорту и доходит до жабр, в которых происходит газообмен: кровь в жабрах обогащается кислородом и освобождается от углекислого газа. Красные клетки крови рыб — эритроциты содержат гемоглобин, связывающий в жабрах кислород, а в органах и тканях — углекислый газ.
Способность гемоглобина в крови рыб извлекать кислород у разных видов различна. Быстро плавающие, живущие в богатых кислородом проточных водах рыбы имеют клетки гемоглобина, обладающие большой способностью к вязке кислорода.
Богатая кислородом артериальная кровь имеет яркий алый цвет.
После жабр кровь по артериям попадает в головной отдел и дальше в спинную аорту. Проходя по спинной аорте, кровь доставляет кислород к органам и в мускулатуру туловища и хвоста. Спинная аорта тянется до конца хвоста, от нее по пути крупные сосуды отходят к внутренним органам.
Обедненная кислородом и насыщенная углекислым газом венозная кровь рыбы имеет тёмно-вишнёвый цвет.
Отдав кислород органам и собрав углекислый газ, кровь по крупным венам идёт к сердцу и предсердию.
Организм рыбы имеет свои особенности и в кроветворении:
Многие органы могут образовывать кровь: жаберный аппарат, кишечник (слизистая), сердце (эпителиальный слой и эндотелий сосудов), почки, селезёнка, сосудистая кровь, лимфоидный орган (скопления кроветворной ткани – ретикулярного синцития — под крышей черепа).
В периферической крови рыбы могут находиться зрелые и молодые эритроциты.
Эритроциты, в отличие от крови млекопитающих, имеют ядро.
Кровь рыбы имеет внутреннее осмотическое давление.
На настоящий момент установлено 14 систем групп крови рыб.
При проведении паразитологического исследования рыб, кровь, а также органы кровообращения берут на анализ.
Какая кровь цветом у рыб
Рыбы с белой кровью.
У большинства позвоночных, как известно, кровь красного цвета. А вот в водах Антарктики обитают уникальные белокровные рыбы. Впервые они были исследованы норвежским ученым Рудом тридцать лет назад. Тогда он установил, например, что в крови крокодиловой белокровки железа — составной части гемоглобина — в 25 раз меньше, чем у обычных рыб. Зато сердце ее втрое больше, чем у родственных ей нототениевых рыб с красной кровью. Соответственно больше и объем снабжающей тело крови. Любопытно, что белокровка дышит в основном не жабрами, а через кожу, густо усеянную капиллярами. Но самое удивительное: кровь этих рыб не замерзает!
Воды у Южного полюса большую часть года имеют температуру около минус 1,9°, и только сравнительно высокая соленость не позволяет им превратиться в лед. Что же за необычное существо белокровка, если известно, что кровь других рыб замерзает при 0,5—0,8°? Долгое время это оставалось загадкой, и только в начале 70-х годов ихтиологи обнаружили истину. Оказывается, в белой крови рыб есть вещества, понижающие температуру ее замерзания. Молекулы вещества состоят частично из белков, частично из сахаров. И именно в последних содержатся в больших количествах те гидроксильные группы, которые не дают ей замерзнуть. Они же играют важную роль в хорошо известном всем автомобилистам антифризе, который заливают зимой вместо воды в радиаторы машин.
Кроме белокровки, в семействе нототениевых есть и другие рыбы, прекрасно приспособившиеся к жизни в воде, температура которой близка к точке замерзания. Температура замерзания крови разновидности пестряка — минус 1,98°, полосатика — минус 2,01°, а у большого широколобика она еще ниже — минус 2,07°.
В печати было сообщение, что ихтиолог Артур де Вриэ намерен заняться лереливанием крови у рыб. В качестве донора выбрана антарктическая треска, у которой также был обнаружен «антифриз». Реципиентом выбрана дальняя родственница донора — североатлантическая треска, которая обитает в менее суровом климате и не имеет противозамораживающих веществ в крови.
Эксперименты с переливанием крови у рыб позволят ученым расширить познания о загадочном веществе. Они могут быть полезны и для медицины.
Новости
Разноцветная кровь у животных
Все мы знаем, что кровь человека красная. Такого же цвета она у всех млекопитающих, птиц, рыб и рептилий. Кровь состоит из плазмы – желтоватой жидкости, в которой растворяются все необходимые вещества. В состав плазмы входят красные и белые кровяные шарики. Именно в красных шариках содержится гемоглобин. Железо, входящее в его состав, при контакте с кислородом придаёт крови яркий красный цвет. Роль гемоглобина чрезвычайно важна для жизни. Этот белок доставляет кислород из лёгких во все ткани организма, а углекислый газ, наоборот, из тканей в лёгкие.
Выражение «голубая кровь» обычно применяют к аристократам. Но знаете ли вы, что в теле осьминогов, кальмаров, других моллюсков, скорпионов и пауков, некоторых червей действительно бежит голубая кровь? Хотя правильнее сказать, что в их организме бесцветная кровь, но при контакте с воздухом она становится голубой и даже может светиться. Всё дело в том, что вместо гемоглобина за доставку кислорода отвечает гемоцианин. В его состав входит медь, которая и придаёт синий цвет крови. Осьминогам просто необходима именно такая кровь, ведь им приходится выживать в холодных водах. Гемоцианин справляется с доставкой кислорода при экстремально низкой температуре. Красная кровь с гемоглобином не подходит для таких условий жизни.
Итак, в природе действительно существует голубая кровь, но есть и зелёная! Её обладатели – некоторые кольчатые черви, пиявки и морские беспозвоночные. В их крови содержится хлорокруорин.
Кровь насекомых называется гемолимфа. Она имеет желтоватый, зеленоватый цвет или вовсе бесцветна. В гемолимфе нет гемоглобина или других дыхательных пигментов. Она течёт не по кровеносным сосудам, а во всей полости тела.
Теперь вы знаете, что кровь у животных бывает самых разных цветов. Это связано с условиями их обитания, образом жизни и строением организма.