как доказать что прямая является касательной к окружности
Касательная к окружности
Определение 1. Прямая, которая имеет с окружностью только одну общую точку, называется касательной к окружности, а их общая точка называется точкой касания прямой и окружности.
На рисунке 1 прямая l является касательной к окружности с центром O, а точка M является точкой касания прямой и окружности.
Свойство касательной
Теорема 1 (Теорема о свойстве касательной). Касательная к окружности перпендикулярна к радиусу, проведенному из центра окружности к точке касания прямой и окружности.
Предположим, что радиус OM является наклонной к прямой l. Поскольку перпендикуляр, проведенной из точки O к прямой l меньше наклонной OM, от центра окружности до прямой l меньше радиуса окружности. Тогда прямая l и окружность имеют две общие точки (см. статью Взаимное расположение прямой и окружности). Но касательная не может иметь с окружностью две общие точки. Получили противоречие. Следовательно прямая l пенрпендикулярна к радиусу OM.
Рассмотрим две касательные к окружности с центром O, которые проходят через точку A и касаются окружности в точках B и C (Рис.2). Отрезки AB и AC называются отрезками касательных, проведенных из точки A.
Теорема 2. Отрезки касательных к окружности, проведенные из одной точки, равны и составляют равные углы с прямой, проходящей через данную точку и центр окружности.
Теорема, обратная теореме о свойстве касательной
Теорема 3. Если прямая проходит через конец радиуса, лежащей на окружности и перпенжикулярна к этому радиусу, то эта прямая является касательной.
Доказательство. По условию теоремы данный радиус является перпендикуляром от центра окружности к данной прямой. То есть расстояние от центра окружности до прямой равно радиусу окружности, и, следовательно, прямая и окружность имеют только одну общую точку (теорема 2 статьи Взаимное расположение прямой и окружности). Но это означает, что данная прямая является касательной к окружности (Определение 1).
Построение касательной к окружности
Задача 1. Через точку M окружности с центром O провести касательную этой окружности (Рис.3).
Решение. Проведем прямую p через точки O и M. На прямой p из точки M отложим отрезок MN равной OM. Построим две окружности с центрами O и N и одинаковыми радиусами ON. Через точки пересечения этих окружностей проведем прямую l. Полученная прямая является касательным к окружности с центром O и радиусом OM.
Задача 2. Через точку A не принадлежащая к окружности с центром O провести касательную этой окружности (Рис.5).
Решение. Проведем прямую p через точки O и A (Рис.6). Найдем среднюю точку отрезка OA и обозначим буквой K. Постоим окружность с центром K радиусом KO=KA. Найдем точки пересечения этой окружности с окружностью с центром O. Получим точки B и C. Через точки A и C проведем прямую m. Через точки A и B проведем прямую n. Прямые m и n являются касательными к окружности с центром O.
Касательные к окружности
В обычной жизни ты очень хорошо представляешь себе, что значит слово «коснуться».
И вот представь себе, в математике тоже существует такое понятие.
В этой теме мы разберёмся с выражениями «прямая касается окружности» и «две окружности касаются».
Касательные к окружности. Коротко о главном
Касательная – прямая, которая имеет с окружностью только одну общую точку.
Касательная окружности перпендикулярна радиусу, проведённому в точку касания.
Угол между касательной и хордой равен половине градусной меры дуги, которая находится внутри угла: \( \displaystyle \angle CAB=\frac<1><2>\angle AOB\), где:
Касание окружностей: если две окружности касаются, то точка касания лежит на прямой, соединяющей их центры. Кроме того, эта прямая перпендикулярна касательной, проведённой в точку касания окружностей:
Внешнее касание
Внутреннее касание
Для двух окружностей с центрами \( \displaystyle <
Касательные к окружности. Определения и основная теорема
Прямая касается окружности, если имеет с ней ровно одну общую точку.
Такая прямая называется касательной к данной окружности.
Посмотри-ка внимательно: очень похоже на жизнь, не правда ли? Прямая на картинке лишь чуть-чуть дотрагивается до окружности, касается ее.
Ну вот, и точно так же:
Две окружности касаются, если имеют ровно одну общую точку.
Что же тебе нужно знать о касательных и касающихся окружности?
Самая важная теорема гласит, что:
Радиус, проведённый в точку касания, перпендикулярен касательной.
Запомни это прямо как таблицу умножения! Все остальные факты о касательных и касающихся окружностях основаны именно на этой теореме.
Доказывать её мы здесь не будем, а вот как эта самая важная теорема работает, увидим сейчас несколько раз.
Угол между касательной и хордой
Угол между касательной и хордой равен половине градусной меры дуги, которая находится внутри угла.
Прежде всего: как это понимать? Подробнее о том, что такое «градусная мера дуги», написано в теме «Окружность. Вписанный угол».
Здесь напомним только, что в дуге столько же градусов, сколько в центральном угле, заключающем эту дугу.
То есть «градусная мера дуги» – это «сколько градусов в центральном угле» – и всё!
Ну вот, как говорит Карлсон, продолжаем разговор. Рисуем ещё раз теорему об угле между касательной и хордой.
Смотри, хорда \( \displaystyle AB\) разбила окружность на две дуги. Одна дуга находится ВНУТРИ угла \( \displaystyle BAC\), а другая дуга – внутри угла \( \displaystyle BAD\).
И теорема об угле между касательной и хордой говорит, что \( \displaystyle \angle CAB\) равен ПОЛОВИНЕ угла \( \displaystyle AOB\), \( \displaystyle \angle DAB\) равен ПОЛОВИНЕ большего (на рисунке — зеленого) угла \( \displaystyle AOB\).
При чем же тут тот факт, что радиус, проведенный в точку касания, перпендикулярен касательной?
Сейчас и увидим. \( \displaystyle OA\) – радиус, \( \displaystyle AC\) – касательная.
Значит, \( \displaystyle \angle OAC=90<>^\circ \).
И осталось вспомнить, что сумма углов треугольника \( \displaystyle AOB\) равна \( \displaystyle 180<>^\circ \).
Здорово, правда? И самым главным оказалось то, что \( \displaystyle \angle OAC=90<>^\circ \).
Равенство отрезков касательных
Задумывался ли ты над вопросом «а сколько касательных можно провести из одной точки к одной окружности»? Вот, представь себе, ровно две! Вот так:
А ещё более удивительный факт состоит в том, что:
Отрезки касательных, проведённых из одной точки к одной окружности, равны.
То есть, на нашем рисунке, \( \displaystyle AB=AC\).
И для этого факта тоже самым главным является то, что радиус, проведённый в точку касания, перпендикулярен касательной.
Проведём радиусы \( \displaystyle OB\) и \( \displaystyle OC\) и соединим \( \displaystyle O\) и \( \displaystyle A\).
\( \displaystyle OB\) – радиус.
\( \displaystyle AB\) – касательная, значит, \( \displaystyle OB\bot AB\).
Ну, и так же \( \displaystyle OC\bot AC\).
Получилось два прямоугольных треугольника \( \displaystyle AOB\) и \( \displaystyle AOC\), у которых:
(заглядываем в тему «Прямоугольный треугольник«, если не помним, когда бывают равны прямоугольные треугольники).
Но раз \( \displaystyle \Delta AOB=\Delta AOC,\) то\( \displaystyle AB=AC\). УРА!
И ещё раз повторим – этот факт тоже очень важный:
Отрезки касательных, проведённых из одной точки, – равны.
И есть ещё один факт, который мы здесь не будем доказывать, но он может оказаться тебе полезен при решении задач.
Для любой прямой \( \displaystyle AD\), пересекающей окружность,\( \displaystyle AD\cdot AC=A<^<2>>\), где \( \displaystyle AB\) – отрезок касательной.
Хитроумными словами об этом говорят так:
«Квадрат длины отрезка касательной равен произведению секущей на её внешнюю часть».
Страшно? Не бойся, помни только, что в буквах это:
Общая касательная к двум окружностям
Прямая, которая касается двух окружностей, называется их общей касательной.
Общие касательные бывают внешние и внутренние. Смотри на картинки.
Две внутренние общие касательные:
Две внешние общие касательные:
А всего – четыре! Не больше, но может быть меньше.
Есть только две внешние общие касательные.
Или так: одна внутренняя и две внешних.
А может быть вообще так:
Только одна общая касательная.
И снова факты:
Длины отрезков двух внутренних общих касательных равны
Длины отрезков двух внешних общих касательных равны.
НО! При этом: внешние и внутренние касательные – разные! (а некоторых, может, и вообще нет…)
Касающиеся окружности
Касание окружностей бывает внешним и внутренним.
Вот такая картинка называется «окружности касаются внешним образом»:
А вот такая картинка называется «окружности касаются внутренним образом»:
Что же самое главное нужно знать?
Если две окружности касаются, то точка касания лежит на прямой, соединяющей центры. Кроме того, эта прямая перпендикулярна касательной, проведённой в точку касания окружностей.
Если тебе показалось слишком длинно – посмотри картинку. Может быть ещё так:
Ура, теперь ты полностью вооружён на борьбу с касательными – дерзай! 🙂
Касательная к окружности
Касательная к окружности, секущая и хорда — в чем разница
В самом названии касательной отражается суть понятия — это прямая, которая не пересекает окружность, а лишь касается ее в одной точке. Взглянув на рисунок окружности ниже, несложно догадаться, что точку касания от центра отделяет расстояние, в точности равное радиусу.
Отрезки и прямые, связанные с окружностью |
Свойства хорд и дуг окружности |
Теоремы о длинах хорд, касательных и секущих |
Доказательства теорем о длинах хорд, касательных и секущих |
Теорема о бабочке |
Отрезки и прямые, связанные с окружностью
Фигура | Рисунок | Определение и свойства | ||||||||||||||||||||
Окружность | ||||||||||||||||||||||
Круг | ||||||||||||||||||||||
Конечная часть плоскости, ограниченная окружностью | ||||||||||||||||||||||
Радиус | ||||||||||||||||||||||
Отрезок, соединяющий центр окружности с любой точкой окружности | ||||||||||||||||||||||
Хорда | ||||||||||||||||||||||
Отрезок, соединяющий две любые точки окружности | ||||||||||||||||||||||
Диаметр | ||||||||||||||||||||||
Хорда, проходящая через центр окружности. Диаметр является самой длинной хордой окружности | ||||||||||||||||||||||
Касательная | ||||||||||||||||||||||
Прямая, имеющая с окружностью только одну общую точку. Касательная перпендикулярна к радиусу окружности, проведённому в точку касания | ||||||||||||||||||||||
Секущая | ||||||||||||||||||||||
Прямая, пересекающая окружность в двух точках Свойства хорд и дуг окружности
Диаметр, перпендикулярный к хорде, делит эту хорду и стягиваемые ею две дуги пополам. | ||||||||||||||||||||||
Диаметр, проходящий через середину хорды | ||||||||||||||||||||||
Диаметр, проходящий через середину хорды, перпендикулярен к этой хорде и делит стягиваемые ею две дуги пополам. | ||||||||||||||||||||||
Равные хорды | ||||||||||||||||||||||
Если хорды равны, то они находятся на одном и том же расстоянии от центра окружности. | ||||||||||||||||||||||
Хорды, равноудалённые от центра окружности | ||||||||||||||||||||||
Если хорды равноудалены (находятся на одном и том же расстоянии) от центра окружности, то они равны. | ||||||||||||||||||||||
Две хорды разной длины | ||||||||||||||||||||||
Большая из двух хорд расположена ближе к центру окружности. | ||||||||||||||||||||||
Равные дуги | ||||||||||||||||||||||
У равных дуг равны и хорды. | ||||||||||||||||||||||
Параллельные хорды | ||||||||||||||||||||||
Дуги, заключённые между параллельными хордами, равны. Теоремы о длинах хорд, касательных и секущих
|