Стратостат что это такое
Стратостат
Стратоста́т (стратосферный аэростат) — свободный аэростат, предназначенный для полётов в стратосферу, то есть на высоту более 11 км. Стратостаты, предназначенные для подъёма только до нижних слоёв стратосферы, называются субстратостатами.
Содержание
Устройство и оборудование стратостата
Хотя стратостат по сути является аэростатом, его устройство имеет ряд существенных отличий от тропосферных и субстратосферных воздушных шаров в силу других условий полёта. Плотность воздуха в нижних слоях стратосферы на порядок меньше, а на высотах около 30 км на 2 порядка меньше, чем на уровне моря, поэтому для создания достаточной аэростатической подъёмной силы объём баллона должен быть достаточно большим и, как правило, превышает 14 000 м³, а объём самого крупного баллона составлял 850 000 м³. Вследствие сильного расширения газа с высотой на старте баллон имеет сильно вытянутую грушевидную форму, которая приближается к шарообразной вблизи верхней точки полёта (т. е. на старте имеют очень низкую т. н. «степень выполнения»). Как правило, баллон стратостата наполняется гелием, в довоенное время в ряде полётов применялся водород, который намного дешевле, но в смеси с воздухом крайне взрывоопасен. Небольшая удельная подъёмная сила газа на значительной высоте (вследствие низкой плотности воздуха) повышает требования к весу оболочки баллона. Обычно её делают из очень тонкого и прочного пластика. В большинстве случаев баллон оборудуется клапаном для стравливания газа, который используется для обеспечения снижения стратостата, а также для уменьшения скорости подъёма во время взлёта.
Гондола стратостата должна надёжно защищать экипаж от смертельных для человека условий стратосферы — низкого давления воздуха и низкой (до −70 °C) температуры. Оболочка гондолы должна выдерживать значительное внутреннее давление, она изготавливается из лёгких металлов, таких как алюминий, и обычно имеет сферическую форму. Как правило, полёт длится в течение многих часов, и экипажу необходима система регенерации воздуха, подобная той, которая применяется в подводных лодках и космических кораблях. Для поглощения углекислого газа может применяться гидроксид лития, для восполнения запасов кислорода — баллоны со сжатым, а в послевоенных полётах также с жидким кислородом.
Система терморегуляции служит для поддержания комфортной температуры в гондоле. Оригинальную систему применил в стратостате FNRS-1 Огюст Пикар: гондола была покрашена с одной стороны в белый, а с другой — в чёрный цвет, что при повороте к Солнцу соответствующей стороной приводило к нагреванию или остыванию гондолы. Однако в первых полётах устройство поворота гондолы не работало, что вызвало один раз перегрев, другой раз — сильное охлаждение воздуха в гондоле. В более поздних полётах использовалась относительно надёжная электрическая система терморегуляции.
Герметичная гондола затрудняет непосредственный сброс балласта, которым оснащают стратостат для регулирования скорости подъёма и спуска. В FNRS-1 для этого применялась специальная воронка, через которую можно было сбрасывать дробь без разгерметизации. В более поздних полётах применялась электромагнитная система сброса балласта, подобная применяемым в батискафах.
Измерительное и научное оборудование стратостата определяется целями полёта. Во всех полётах гондола оснащается внутренним и наружным термометрами и высотомером, достаточно часто используются счетчики радиоактивных частиц, оборудование для определения химического состава или забора проб воздуха, фото- и видеооборудование. В ряде полётов в состав оборудования включался телескоп для проведения астрономических наблюдений.
FNRS-1
Первый в мире стратостат был сконструирован и построен выдающимся швейцарским учёным Огюстом Пикаром, который планировал использовать его для исследования космических лучей. Стратостат был оборудован сферической герметичной гондолой из алюминия, которая защищала экипаж от непригодных для жизни условий стратосферы. Проектирование и создание гондолы было осуществлено в 1930 году при поддержке бельгийской организации Fonds National de la Recherche Scientifique (FNRS), в честь которой она была названа FNRS-1.
27 мая 1931 Огюст Пикар и Пауль Кипфер совершили первый в истории полёт в стратосферу из города Аугсбург, Германия, достигнув высоты 15785 м. Через некоторое время после старта выяснилось, что гондола негерметична, но Пикару быстро удалось заделать щель. В ходе дальнейшего подъёма отказал механизм управления клапаном баллона и стратостат потерял управление. В довершение выяснилось, что неисправна система терморегуляции гондолы, из-за нагрева солнцем температура поднялась до 40 °C при температуре воздуха снаружи стратостата −50 °C. Несмотря на все неприятности, ночью, когда баллон остыл, стратонавтам удалось благополучно приземлиться в тирольских Альпах. 18 августа 1932 Пикар совершил второй рекордный полёт, в целом более удачный, вместе с бельгийским учёным Максом Козинсом. Стратостат стартовал из Цюриха и достиг высоты 16,2 км. Во время полётов Пикар собрал важные данные о верхних слоях атмосферы и о космических лучах.
Впоследствии Огюст Пикар использовал идею, заложенную в стратостате, при проектировании первого батискафа FNRS-2 — автономного глубоководного исследовательского аппарата. Батискаф был построен по той же схеме: герметичная гондола и баллон, но роль баллона, наполненного лёгким газом, играет стальной поплавок, наполненный бензином.
Стратостаты в СССР
В СССР полёты Пикара вызвали большой интерес, и в 1933—1934 годах были построены стратостаты «СССР-1» и «Осоавиахим-1». 30 сентября 1933 «СССР-1» конструкции К. Д. Годунова совершил полёт на высоту 19 км, установив новый мировой рекорд. Вместе с Годуновым стратостат пилотировали Э. К. Бирнбаум и выдающийся советский воздухоплаватель Г. А. Прокофьев.
В 1934 году аварией закончился полёт стратостата «СССР-2».
26 июня 1935 стартовал стратостат «СССР-1-бис» с экипажем в составе К. Я. Зилле, Ю. Г. Прилуцкий, А. Б. Вериго. После выполнения научной программы, в начале снижения, выяснилось, что оболочка баллона повреждена. Через некоторое время после входа в тропосферу, когда появилась возможность безопасно открыть люк, Прилуцкий и Вериго выпрыгнули с парашютом. Зилле удалось благополучно посадить облегчённую гондолу.
В 1937 году упал стратостат «СССР-3».
В 1958 году в СССР был построен стратостат «СС»-«Волга» (см. Парашютные прыжки из стратостатов).
Проект Man High
Исследования Пикара также привлекли внимание и в США. Его брат-близнец Жан Пикар, гражданин США, в 1933—1934 построил стратостат «Век прогресса» (Century of Progress), который совершил два полёта, внеся весомый вклад в исследование стратосферы. Во втором полёте участвовала его жена Жанет, ставшая первой женщиной-стратонавтом. 11 ноября 1935 года американские исследователи А. Стивенс и О. Андерсон на стратостате Explorer-2 достигли высоты 22066 м, полёт водородного стратостата Explorer-1, состоявшегося за год до этого, завершился аварией, экипажу удалось спастись, выпрыгнув с парашютом.
В 1957—1958 годах ВВС США была проведена серия стратосферных полётов на высоту около 30 км, получившая название «Man High» (первоначальное название «Дедал»). Хотя в 50-е годы самолёты уже достигали стратосферы, они не могли находиться там дольше нескольких минут, стратостат же мог висеть в условиях, близких к космическим, в течение многих часов, что имело большое значение для отработки систем жизнеобеспечения космических полётов.
9 ноября 1955 был заключён контракт на создание первого стратостата серии «Man High». В 1956 проект был детально разработан и утверждён командованием ВВС. Проект осуществлялся сотрудниками центра разработки ракетного вооружения ВВС и авиамедицинской полевой лаборатории, расположенных на базе ВВС США Холломан в штате Нью-Мексико. Руководителем был назначен полковник Джон Пол Стапп. Основными целями проекта были отработка систем жизнеобеспечения, контроля состояния пилота, катапультирования и посадки, исследование космической радиации и влияния условий высотного полёта на организм человека. Впоследствии многие из результатов, полученных в ходе реализации проекта, были использованы при создании серии американских космических кораблей «Меркурий».
В ходе подготовки были произведены испытания парашютной системы гондолы, отработана посадка на сушу и на воду, пилоты произвели ряд полётов в открытых аэростатах и прыжков с парашютом. 2 июня 1957 года в 6 часов 23 минуты возле города Саут Сент-Пол в штате Миннесота стратостат Man High I начал первый пилотируемый полёт. Пилотом стал Джозеф Киттингер. Максимальная высота полёта составила 29260 м, что значительно превышало достигнутые к тому времени результаты, несмотря на то, что продолжительность полёта была сокращена с 22 часов до 6,5 из-за небольшой утечки кислорода.
Man High II, пилотируемый Дэвидом Симонсом, поднялся в воздух 19 августа 1957 из карьера около города Кросби в штате Миннесота. Общая высота стратостата составляла 107 м. Впервые в истории высота полёта превысила 30 км и составила в максимуме 30942 м. Длительность полёта составила 32 часа 10 минут вместо запланированных 24 часов. Симонс был вынужден задержать посадку из-за большого грозового фронта в расчётном районе, который делал её слишком опасной. В последние часы полёта подошёл к концу заряд аккумуляторов и начались проблемы в системе жизнеобеспечения, поэтому пилоту пришлось отключить систему охлаждения гондолы и пользоваться кислородной маской. Полёт завершился в 17 часов 20 августа в северной части штата Южная Дакота.
8 октября 1958 года состоялся третий полёт серии. Стратостат Man High III, пилотируемый Клифтоном МакКлюром поднялся в воздух с ракетного полигона Уайт Сендс в штате Нью-Мексико. Из-за повышения температуры в гондоле полёт был прерван досрочно, тем не менее стратостат успел достичь высоты 29870 м. Продолжительность полёта составила 12 часов.
Проект «Red Bull Stratos»
14 октября 2012 года Феликс Баумгартнер, поднявшись на стратостате на высоту около 39 068 метров, совершил удачный прыжок с парашютом с высоты 39 045 метров. Ранее он совершил два подготовительных (тестовых) прыжка: 15 марта 2012 года — с высоты 21 818 метров (во время прыжка он провел около трех минут и 43 секунд в свободном падении, достигая скорости более 580 км/ч, до открытия парашюта; в общем, прыжок длился около восьми минут и восьми секунд), а 25 июля 2012 года — с высоты 29 460 метров.
Парашютные прыжки из стратостатов
В 1959—1962 годах было построено несколько стратостатов, предназначенных для испытания космических и авиационных скафандров и парашютных систем для приземления с большой высоты. Такие стратостаты были, как правило, оборудованы открытыми гондолами, от разрежённой атмосферы стратонавтов защищали скафандры. Эти испытания оказались предельно опасны. Из шести стратонавтов трое погибли, а один потерял сознание во время свободного падения.
Американский проект «Excelsior» включал три высотных прыжка из стратостатов объёмом 85 000 м³ с открытой гондолой, которые выполнил Джозеф Киттингер в 1959—1960 годах. Он испытывал компенсирующий гермокостюм со шлемом и двухступенчатый парашют системы Бопре, состоящий из стабилизационного парашюта диаметром 2 м, который должен предохранять парашютиста от вращения при полёте в стратосфере и основного парашюта диаметром 8,5 м для приземления. В первом прыжке с высоты 23300 м из-за раннего раскрытия стабилизационного парашюта тело пилота начало вращаться с частотой около 120 об/мин и он потерял сознание. Лишь благодаря автоматической системе раскрытия основного парашюта Киттингеру удалось спастись. Второй и третий полёты прошли более удачно, несмотря на то, что в третьем произошла разгерметизация правой перчатки и рука пилота сильно распухла. В третьем полёте, который состоялся 16 августа 1960 Киттингер установил сразу несколько рекордов — высоты полёта на стратостате, высоты свободного падения и скорости, развитой человеком без использования транспорта. Падение продолжалось 4 минуты 36 секунд, за которые пилот пролетел 25816 м и на некоторых участках развил скорость около 1000 км/ч, вплотную приблизившись к скорости звука. Полёты в рамках проекта «Excelsior» дали важные результаты для разработки авиационных гермокостюмов и систем спасения.
Проект «StratoLab» включал четыре субстратосферных полёта и пять стратосферных, из которых четыре — с герметичной гондолой и один (StratoLab V) с открытой. В ходе полётов была выполнена обширная научная программа, включающая исследование состава воздуха в стратосфере, космических лучей и атмосферного электричества, а также астрономические наблюдения. Полёт StratoLab V «Lee Lewis» состоялся 4 мая 1961. Стратостат объёмом свыше 283 000 м³ был запущен с авианосца Antietam в Мексиканском заливе и через 2 часа 11 минут после старта достиг рекордной высоты 34668 м. Стратонавты Малколм Росс и Виктор Претер были одеты в космические скафандры. После успешного приводнения Претер погиб, не удержавшись на трапе во время подъёма на вертолёт и захлебнувшись. Он раньше времени разгерметизировал скафандр, так как был уверен, что опасность миновала.
В 1965—1966 американский парашютист Николас Пиантанида предпринял три попытки побить рекорды, установленные Андреевым и Киттингером, инициировав проект «StratoJump». 22 октября 1965 состоялась первая попытка, длившаяся около 30 минут. На высоте около 7 км баллон был повреждён и пилот спасся на парашюте. Во время второго полёта 2 февраля 1966 стратостат поднялся на высоту 37600 м, установив рекорд. Но Пиантанида не смог отключиться от установленного в гондоле баллона с кислородом и перейти на автономную систему скафандра, поэтому прыжок пришлось отменить. По команде с земли гондола отделилась от стратостата и успешно опустилась на парашюте. 1 мая 1966 состоялся третий полёт, который закончился трагедией — при подъёме на высоте 17500 м произошла разгерметизация скафандра и парашютист погиб.
3 сентября 2003 была произведена попытка установить новый рекорд высоты полёта стратостата. Баллон QinetiQ-1 высотой 381 м и объёмом около 1 250 000 м³, изготовленный британской фирмой QinetiQ, должен был поднять открытую гондолу с двумя пилотами, одетыми в космические скафандры, на высоту 40 км. Попытка завершилась провалом — через некоторое время после начала наполнения баллона гелием в оболочке обнаружилось повреждение и полёт был отменён.
Стратостат
Данные о полетах стратостатов.
Дата полёта | Экипаж и страна | Объём стратостата, м 3 | Достигнутая высота, м | Время пребывания в воздухе |
---|---|---|---|---|
27.5.1931 12.8.1932 | А. Пикар и П. Кипфер (Бельгия) | 14300 | 15780 | 16 ч |
30.9.1933 | А. Пикар и М. Козине (Бельгия) | 14300 | 16370 | 11 ч 45 мин |
30.1.1934 | Г. А. Прокофьев, К. Д. Годунов, | 25000 | 19000 | 8 ч 20 мин |
28.7.1934 | Э. К. Бирнбаум (СССР) | 25000 | 22000 | |
18.8.1934 26.6.1934 | П. Ф. Федосеенко, А. Б. Васенко, | 85000 | 18000 | 7 ч 4 мин |
11.11.1935 | И. Д. Усыскин (СССР) | 14300 | 16000 | 9 ч 57 мин |
Кеппнер, А. Стивене, | 25000 | 16200 | 14 ч | |
О. Андерсон (США) | 105000 | 22066 | 2 ч 37 мин | |
М. Козине, Н. ван дер Элст (Бельгия) | 8 ч 15 мин | |||
К. Я. Зилле, Ю. Г. Прилуцкий, | ||||
А. Б. Вериго (СССР) | ||||
А. Стивенс и О. Андерсон (США) |
Лит.: Стивенс А., Два полета американских стратостатов, пер. с англ., М., 1937; Ревзин С. В., Свободное воздухоплавание, М., 1951.
На пути в космос. Стратостаты
Сегодня посмотрим, на чем в 1930-е годы предки впервые оторвались от Земли на расстояние в 20 километров.
Гондола стратостата «СССР-1»: кольчугалюминий, утеплитель из оленьего войлока, амортизатор из ивовых прутьев.
1. Предыстория. Зачем?
Одной из главных научных целей путешествий в стратосферу было измерение интенсивности космических лучей. Наилучшие условия для этого были вдали от поверхности Земли, чем дальше — тем лучше. А поскольку обслуживать тогдашнюю аппаратуру должен был человек, то полеты закономерно должны были стать пилотируемыми.
Параллельно в виду надвигающейся большой войны перед военными забрезжила идея сверхвысотной авиации с невиданными доселе скоростями и вне зоны досягаемости зенитного огня.
Интересы ученых и военных совпали. Помноженные на романтику открытий и стремление к рекордам, эти факторы вылились в краткий бум стратонавтики 1930-х годов.
Игроков в стратосфере было трое: швейцарец Огюст Пиккар, СССР и США. С 1931 по 1935 год эти участники построили с десяток стратостатов и установили шесть мировых рекордов высоты.
2. Устройство гондолы
Поскольку давление в стратосфере крайне низкое, то человеку там необходима герметичная капсула или скафандр. В 1930-х остановились на первом, более простом, варианте.
К разработке гондол подходили весьма тщательно — например, для кабины рекордного стратостата «СССР-1» сделали полноразмерный деревянный макет, отработали на нем компоновочные решения, выполнили гондолу в металле, испытали ее давлением и лишь после этого допустили к полету.
Гондолы первых советских стратостатов оснащались амортизационным устройством из ивовых прутьев, размещавшимся под кабиной (см. первый снимок).
При скорости более 5 м/с «корзина» должна была сломаться, поглотив энергию удара.
У первого «настоящего» стратостата «FNRS-1» Огюста Пиккара амортизаторы были только, так сказать, персональные:
Американцы ушли не дальше — команда Explorer II была экипирована лишь шлемами для американского же футбола.
Углекислый газ в гондоле поглощался патронами с гидроксидом натрия (едким натром), кислород добавлялся вручную из баллонов с жидким или газообразным О2.
Влажность воздуха в гондолах часто никак не регулировалась, быстро достигала 100% и выпадала в виде росы или инея на стенках. В одном из полетов советские стратонавты едва успели закончить замеры параметров до того, как реки конденсата смыли риски на шкалах приборов, сделанные тушью. Позже появились сорбенты-поглотители влаги. Была интересная идея с осушением воздуха путем его охлаждения до выпадения конденсата, но опробована она, насколько мне известна, не была.
Гондола FNRS-1 была оригинальней всех:
С одной стороны ее покрасили в белый, а с другой — в черный цвет. По замыслу создателя, поворот сферы той или иной стороной к Солнцу должен был регулировать температуру в гондоле.
4 — пропеллер для вращения гондолы.
На практике устройство не заработало, солнце светило с «черной» стороны и внутренняя температура в первом полете Пиккара поднялась до +38.
В следующем полете вентилятор сняли, а всю капсулу покрыли серебрянкой. Внутри стало минус 16.
Американские конструкторы сделали то же, но по своему:
Предполагалось, что верхняя половина сферы будет отражать солнечное излучение, а нижняя — поглощать тепло от Земли. Идея сработала лучше предыдущей, но тоже не блестяще: во время полетов в гондоле были бодрые +5 градусов.
Советские стратонавты просто теплоизолировали металлические гондолы, обтягивали их материей и красили в серый или голубой цвет. Как показала практика, такое решение оказалось самым удачным.
Проблему герметизации веревки управления маневренным клапаном на выходе из гондолы конструктор FNRS-1 Пиккар решил, пропустив клапанную веревку через U-образную трубку, заполненную ртутью. Ртуть своим весом компенсировала разницу давлений и являлась жидким уплотнителем, не препятствуя прохождению клапанной веревки.
Вид сверху на внутренность гондолы; в верхней части снимка видна U-образная трубка:
(это снимок «Осоавиахима-1», на котором U-трубку «срисовали» с FNRS-1)
Приборы для взятия проб воздуха размещались снаружи кабины. Так, на стропах «СССР-1» подвешены стеклянные сосуды, из которых откачан воздух. По сигналу из кабины электромагнит отпускал грузик, тот отбивал конец горлышка, и воздух из стратосферы поступал в сосуд. При последующей подаче тока разогревалась платиновая проволока и запаивала горлышко обратно.
(«СССР-1» строился под эгидой ВВС РККА — вспоминаем про интерес армии — поэтому стартовая команда состоит из красноармейцев).
США. Explorer. И тут военные:
3. Водород и балласт
Теория и практика воздухоплавания гласили: снижение аэростата с предельной высоты происходит со все возрастающей скоростью. Балласта брали много — до 30% от подъемной силы — и во время спуска сбрасывали, чтобы скорость не стала слишком большой.
О важности балласта говорит тот факт, что «Осоавиахим-1» во время рекордного подъема на 22 км сохранил так мало балласта, что спуститься благополучно шансов уже не имел, в связи с чем и разбился (см. Документы о катастрофе стратостата «Осоавиахим-1»).
Однако гондола стратостата — это не корзина воздушного шара, она герметична. В экстренных случаях экипаж мог выкинуть малоценное оборудование типа кислородных баллонов и аккумуляторов или выброситься с парашютами, но это возможно уже на относительно небольшой высоте, когда можно открыть люки. Для сброса балласта на высоте нужно было техническое решение.
На FNRS-1 и «Осоавиахиме-1» весовая нагрузка в виде свинцовой дроби находился внутри гондолы. При необходимости пилот совком зачерпывал дробь, насыпал в приемную воронку, закрывал верхний кран, открывал нижний — дробь высыпалась, оставляя гондолу герметичной.
9 — устройство сброса балласта
У стратостата «СССР-1» дробь в мешках находилась под гондолой, внутри уже знакомого нам амортизатора.
Мешки удерживались штырьками; стратонавт крутил рукоятку (на рисунке поз.22), трос наматывался на барабан и последовательно выдергивал штырьки. Мешки, будучи привязанным к амортизационной корзине за нижний конец, опрокидывались, высыпая дробь через свой верхний конец. Таким образом, устранялись несчастные случаи, которые могли бы произойти, если бы дробь падала мешками. Длина троса была подобрана таким образом, чтобы при одном полуобороте вала вытаскивался один штырек. Если пилот хотел сбросить, скажем, три мешка балласта, он должен был прокрутить ручку на 1,5 оборота.
Вся тонна балласта могла быть сброшена за минуту, посему такая схема считалась более продвинутой.
Чтобы дать пилоту возможность контролировать запас балласта, у двух окон гондолы «СССР-1» снаружи были укреплены два зеркала, при помощи которых пилот видел подвешенные под капсулой мешки.
Внутри гондолы. Видны: рукоятка сброса балласта, кислородные баллоны, откинутая аварийная заглушка на иллюминаторе:
Для сравнения внутренности «американца»:
Американцы мешки с балластом и аккумуляторы подвешивали снаружи гондолы, но сбрасывали также изнутри, выдергивая соответствующие штырьки.
Собственно, сброс балласта и открытие выпускного клапана в верху оболочки — это все инструменты управления стратостатом. Хотим вверх — сбрасываем балласт, вниз — выпускаем газ из оболочки.
Выпускной клапан:
Клапан открывался путем дерганья за соответствующую веревку в гондоле.
Непосредственно при посадке стратонавты тянули другую веревку, помеченную красным лоскутком — веревку разрывного полотна. При приземлении этот большой кусок ткани в верху оболочки позволял быстро освободить оболочку от водорода.
Черный кружок — выпускной клапан, черный треугольник — разрывное полотнище.
Иногда разрывное полотнище не срабатывало:
Оболочку изготавливали из прорезиненного хлопка или шелка, в верхней части плотнее, чем в нижней. Здесь хорошо видно:
Пуски стратостатов переносились так же часто, как через 50 лет будут переносится старты «шаттлов».
Погоду ждали месяцами. Высота рекордных стратостатов составляла более сотни метров, и для старта нужен был штиль, ибо в противном случае ветер сносил наполняющуюся оболочку. В частности, поэтому американцы запускали свои аппараты из каньона, а много позже — с палубы авианосца, который мог своим ходом скомпенсировать ветер.
По той же причине нижнюю часть огромной оболочки стратостата «СССР-3» при старте подвязали к верхней, уменьшив его высоту. После подъема на несколько сот метров «скрепы» отпустили, но нижняя часть оболочки задела веревку разрывного полотнища, оно открылось, и стратостат рухнул с высоты 700-800 м:
Так же, как ветер, недопустим был и туман. «СССР-1» при первом старте 23 сентября 1933 года набрал на оболочку полтонны влаги и просто не смог взлететь — водород стравили, запуск перенесли.
Обычно старт происходил в теплый сезон, рано утром. Ночью оболочку заполняли газом через главный аппендикс (рукав), который потом завязывался. Дополнительные аппендиксы, через которые внутрь оболочки проходили веревки клапана и разрывного полотнища, оставались открытыми: через них внутренность оболочки свободно сообщалась с атмосферой.
Заправка Explorer’а:
Тут тоже были нюансы. Заполнение «СССР-2»:
На центральном московском аэродроме разложена гигантская оболочка, вокруг 1000 баллонов со сжатым водородом. Дается команда, баллоны открываются, и водород по шлангам сначала небольшого диаметра, затем соединяющимся и увеличивающимся, пошел в патрубок диаметром больше полуметра, соединенный с оболочкой. Оболочка начала приподниматься, пухнуть. Она растет на глазах все выше и выше… Уже верхний купол на высоте примерно 100 м. А заполнение продолжается, часть оболочки еще лежит на земле, вздувается горбом, водород образует эти горбы и с шумом прорывается кверху. И вдруг… при одном таком прорыве внутри оболочки раздался глухой грохот, вверху показались языки пламени. Все бросились врассыпную. А оболочка с пламенем вверху медленно опускается на землю. Команда — «закрыть баллоны», начали обрезать шланги. Паника улеглась. Оболочка догорела до земли, образовался большой выжженный круг, и все погасло.
Потом выяснилось — рабочие завода «Каучук», готовившие оболочку, не могли ходить по ней босиком, она «кололась», масса шелковой прорезиненной ткани при шевелении заряжалась электричеством.
Водород вообще из-за своей взрывоопасности доставлял массу проблем. Только один из рекордных стратостатов — американский «Explorer II» летел на гелии.
Параллельно с заполнением оболочки взвешивали гондолу, пломбировали метеоприборы и запускали радиозонды-разведчики погоды, если таковые имелись.
Предстартовый осмотр оболочки «СССР-1» с шаров-прыгунов:
Когда подавалась команда «Тишина на старте!», к верхушке оболочки поднимался «прыгун», стратонавты тянули веревку выпускного клапана, и «прыгун» на слух убеждался, что клапан открылся.
Как видно, оболочка заправлялась водородом далеко не полностью. Поскольку на высоте 20 км плотность воздуха составляет 0,09 кг/куб.м против 1,2 кг/куб.м на уровне моря, то и объем оболочки с подъемом увеличивался во 10. 15 раз:
20 километров — это как раз та высота, вокруг которой шла борьба рекордов. Положение на 1934 год (финальную точку здесь поставил Explorer II с результатом 22066 м):
В черной рамке — погибшие Федосеенко, Васенко и Усыскин с «Осоавиахима-1».
Вообще стратостаты падали разнообразно и регулярно, особенно, к сожалению, советские. Так «садился» Explorer I (разрыв оболочки):
По той же причине, но не столь стремительно, упал и советский «СССР-1-бис». И в том, и в другом случае люди спаслись, выбросившись с парашютами, но в целом стратосфера взяла человеческих жизней, пожалуй, больше, чем космос.
После Второй мировой стратостаты использовали для испытаний космических скафандров и систем спасения, с них пытались запускать ракеты, применяли для шпионажа и наблюдений за космосом, а завтра из стратосферы обещают раздавать интернет.
а) FAQ: Почему каждый стратостат имеет свой «потолок»? В какое время года лучше летать в стратосферу? Для чего при спуске стратостата обычно выпускают длинную веревку (гайдроп), которая волочится по земле? и т.д. — Прянишников В.И. «Занимательное мироведение в вопросах и ответах» (1939).
б) Кинохронику можно увидеть в фильмах про Осоавиахим-1 и про Explorer II.
г) Последний по времени, кхм, пилотируемый полет на стратостате — проект «Хвост» с мышенавтом на борту.