каждой белковой молекуле соответствует что

Генетический код. Биосинтез белка

теория по биологии 🌿 основы генетики

Генетическая информация и генетический код

Каждый вид имеет свой собственный, отличный от других видов, набор белков. Интересно то, что белки, выполняющие идентичные функции у разных видов могут быть похожими или даже абсолютно идентичными.

У белков есть несколько состояний их структур:

каждой белковой молекуле соответствует что. Смотреть фото каждой белковой молекуле соответствует что. Смотреть картинку каждой белковой молекуле соответствует что. Картинка про каждой белковой молекуле соответствует что. Фото каждой белковой молекуле соответствует что

Именно первичная структура является определяющей свойства белка. Эта структура – цепь из аминокислот. Аминокислоты, в свою очередь, представляют собой ряд триплетов из нуклеотидов. Решая генетические задачи, обращаются как раз-таки к знакомой таблице:

каждой белковой молекуле соответствует что. Смотреть фото каждой белковой молекуле соответствует что. Смотреть картинку каждой белковой молекуле соответствует что. Картинка про каждой белковой молекуле соответствует что. Фото каждой белковой молекуле соответствует что

Каждая аминокислота кодируется тремя нуклеотидами, которые составляют триплет или иначе кодон. Именно последовательность нуклеотидов называется генетической информацией, а участок последовательности, в котором хранится информация о первичной структуре белка это и есть ген.

Нуклеотиды, составляющие ДНК и РНК различаются:

В состав ДНК входят:

В состав РНК входят:

Кроме того, в составе РНК (рибонуклеиновой кислоты) сахар рибоза, а ДНК (дезоксирибонуклеиновой кислоты) — дезоксирибоза. РНК — одноцепочечная, а ДНК — двухцепочечная.

Между нуклеотидами есть водородные связи. Они могут быть как двойные, так и тройные. Нуклеотиды не могу быть связаны в случайном порядке. Для этого существует принцип комплементарности ДНК, по которому аденин одной цепи ДНК соединяется с тимином другой цепи ДНК, другая пара в ДНК – гуанин – цитозин. В РНК все аналогично, за исключением того, что вместо тимина там урацил. Между парами А-Т/А-У две водородных связи, а между парами Ц-Г – три. На письме это обозначается чёрточками: двойная связь как знак «равно», а тройная – три горизонтальные черты.

каждой белковой молекуле соответствует что. Смотреть фото каждой белковой молекуле соответствует что. Смотреть картинку каждой белковой молекуле соответствует что. Картинка про каждой белковой молекуле соответствует что. Фото каждой белковой молекуле соответствует что

Свойства генетического кода

Транскрипция и трансляция

Из цитологии известно, что генетическая информация у эукариотических клеток заключена в ядре в виде ДНК. Однако процесс биосинтеза белка происходит в цитоплазме на рибосомах.

Спиральная цепь ДНК при раскручивается, в это время по одной из цепочек ДНК строится комплементарная цепь. Из ядра в цитоплазму информация выходит в виде информационной РНК (иРНК). иРНК комплементарная одной из цепей ДНК. Этот процесс переписывания называется транскрипцией. Полученная цепь практически идентичная другой цепи ДНК, за исключением того, что вместо тимина там урацил.В процессе участвует специальный фермент РНК-полимераза.

каждой белковой молекуле соответствует что. Смотреть фото каждой белковой молекуле соответствует что. Смотреть картинку каждой белковой молекуле соответствует что. Картинка про каждой белковой молекуле соответствует что. Фото каждой белковой молекуле соответствует что

Теперь в ядре есть цепочка, которая уже начала процесс биосинтеза. Как говорилось выше, процесс ассимиляции идет на рибосомах. иРНК выходит в цитоплазму через поры ядерной мембраны

тРНК по форме напоминает лист клевера, а по принципу работы – штамп. На него, прямо как чернила, наслаиваются кодоны.

В цитоплазме начинается процесс трансляции, то есть перевод последовательности нуклеотидов информационной РНК в последовательность аминокислот белка.

каждой белковой молекуле соответствует что. Смотреть фото каждой белковой молекуле соответствует что. Смотреть картинку каждой белковой молекуле соответствует что. Картинка про каждой белковой молекуле соответствует что. Фото каждой белковой молекуле соответствует что

Рибосома захватывает стартовый конец цепи иРНК. Затем она начинает двигаться по цепи, одна остановка рибосомы происходит на 6-ти нуклеотидах. В это время молекула тРНК, на которых есть триплет аминокислоты «подлетает» к цепи, в месте, где находится рибосома. За время остановки рибосомы транспортная РНК успевает распознать свою пару на цепи иРНК, которая называется антикодоном. Тогда тРНК «ставит свой штамп», оставляя на цепи свой кодон. Между нуклеотидами образуются водородные связи. Так нарастает новая цепь. На одной информационной РНК работает сразу много рибосом, поэтому работа идет очень быстро. Совокупность рибосом, синтезирующих на одной иРНК, называется полисомой.

По окончанию процесса биосинтеза, цепочка отсоединяется от рибосомы и принимает свою природную структуру: вторичную, третичную или четвертичную.

pазбирался: Надежда | обсудить разбор | оценить

В современной генетической инженерии часто применняют технологии, связанные с гомологичной рекомбинацией ДНК непосредственно в живом объекте. Один из примеров – система CRE-Lox P. Lox P – это последовательность нуклеотидов в ДНК фага Р1. Она состоит из 34 нуклеотидов. В середине располагается несимметричная последовательность из 8 нуклеотидов (показана серой стрелкой на рисунке). По краям располагаются так называемые палиндромные последовательности из 13 нуклеотидов (выделены на рисунке как пунктирные блоки). Они симметричны (чтобы в этом убедиться, достаточно прочитать обе последовательность от 5´- конца к 3´- концу). Именно эти палиндромные участки узнаёт особый фермент, вызывающий рекомбинацию, который обозначают CRE. Будем в дальнейшем называть этот фермент рекомбиназой CRE. Для того, чтобы состоялась рекомбинация, два сайта Lox P должны расположиться параллельно друг другу. Рекомбиназа CRE узнает эти сайты, внесет в ДНК разрезы в определённых местах, а затем каждой белковой молекуле соответствует что. Смотреть фото каждой белковой молекуле соответствует что. Смотреть картинку каждой белковой молекуле соответствует что. Картинка про каждой белковой молекуле соответствует что. Фото каждой белковой молекуле соответствует чтосоединит по-новому две нити ДНК (т.е. произойдет рекомбинация). Аналогично работает и другая система гомологичной рекомбинации – Flp-FRT, обнаруженная у пекарских дрожжей. Сайт FRT – это последовательность ДНК, которую узнает свой фермент гомологичной рекомбинации – флиппаза (Flp). каждой белковой молекуле соответствует что. Смотреть фото каждой белковой молекуле соответствует что. Смотреть картинку каждой белковой молекуле соответствует что. Картинка про каждой белковой молекуле соответствует что. Фото каждой белковой молекуле соответствует чтоПри рекомбинации две молекулы ДНК должны ориентироваться параллельно друг другу сайтами FRT, и только в этом случае произойдёт рекомбинация. Заметим, что флиппаза Flp узнает только свою последовательность FRT, но не может работать с сайтами Lox P, а рекомбиназа CRE узнает только свои сайты Lox P, но не работает с сайтами FRT. Предварительное доказательство (лемма) к задаче 9 (5 баллов). 1. Докажем, что при гомологичной рекомбинаци по «перевёрнутым» (инвертированным) повторам происходит «переворот» последовательности ДНК, находящейся между повторами. Для этого нарисуем молекулу ДНК и условно обозначим на ней буквами несколько точек. каждой белковой молекуле соответствует что. Смотреть фото каждой белковой молекуле соответствует что. Смотреть картинку каждой белковой молекуле соответствует что. Картинка про каждой белковой молекуле соответствует что. Фото каждой белковой молекуле соответствует чтоЗатем «изогнём» молекулу так, чтобы повторы, обозначенные стрелками, встали параллельно друг другу. После обмена участками и «распрамления» окажется, что центральная часть между повторами «перевернулась». каждой белковой молекуле соответствует что. Смотреть фото каждой белковой молекуле соответствует что. Смотреть картинку каждой белковой молекуле соответствует что. Картинка про каждой белковой молекуле соответствует что. Фото каждой белковой молекуле соответствует что2. Докажем, что при гомологичной рекомбинаци по прямым повторам происходит образование кольцевой ДНК, при этом из линейной последовательности ДНК «удаляется» участок, находящейся между повторами. Для этого используем тот же приём: нарисуем молекулу ДНК и условно обозначим на ней буквами несколько точек. Только в этом случае для того, чтобы прямые повторы встали параллельно друг другу, придётся хитроумно изогнуть молекулу так, чтобы от конца одного из повторов (точка С) шли точки D, E, F, а потом начинался новый повтор (в точке G). После рекомбинации точки С и G поменяются местами, и в результате получится кольцевая ДНК (C, D, E, F, G) и линейный участок (A, B, H, J). Будем считать, что кольцевая ДНК как бы «исчезает» (не может реплицироваться в клетке). каждой белковой молекуле соответствует что. Смотреть фото каждой белковой молекуле соответствует что. Смотреть картинку каждой белковой молекуле соответствует что. Картинка про каждой белковой молекуле соответствует что. Фото каждой белковой молекуле соответствует чтоА. Поскольку после 35S-промотора на той же цепи ДНК располагается кодирующая часть гена DsRed, клетки должна светиться красным светом. Б. Рекомбиаза CRE узнаёт последовательнсоти LoxP. Если повторы расположены инвертированно, то произойдёт «переворот» последовательности ДНК, расположенной между повторами. Таким образом, после рекомбинации конструкция будет выглядеть следущим образом: каждой белковой молекуле соответствует что. Смотреть фото каждой белковой молекуле соответствует что. Смотреть картинку каждой белковой молекуле соответствует что. Картинка про каждой белковой молекуле соответствует что. Фото каждой белковой молекуле соответствует чтоСвечение клеток изменится, поскольку после промотора на той же цепи ДНК окажется гена BFP, обестпечивающий синее свечение клеток. В. При рекомбинации по прямым повторам происходит потеря участка ДНК, расположенного между ними. Из двух повторов остаётся только один. Таким образом, после рекомбинации по сайтам FRT конструкция будет выглядеть следующим образом: каждой белковой молекуле соответствует что. Смотреть фото каждой белковой молекуле соответствует что. Смотреть картинку каждой белковой молекуле соответствует что. Картинка про каждой белковой молекуле соответствует что. Фото каждой белковой молекуле соответствует чтоКлетки будут светиться зелёным светом за счёт того, что под промотором оказалась кодирующая последовательность гена GFP. Г. После действия рекомбиназы CRE те последовательности, на которые может действовать флип паза Flp, «перевернулись», и вместо прямых стали инвертрованными. После рекомбинации участок между ними также должен «перевернуться»: каждой белковой молекуле соответствует что. Смотреть фото каждой белковой молекуле соответствует что. Смотреть картинку каждой белковой молекуле соответствует что. Картинка про каждой белковой молекуле соответствует что. Фото каждой белковой молекуле соответствует чтоВ этом случае клетки также будут светиться зелёным светом за счёт того, что под промотором оказалась кодирующая последовательность гена GFP.

pазбирался: Надежда | обсудить разбор | оценить

pазбирался: Надежда | обсудить разбор | оценить

Сначала найдём место расщепления плазмиды рестриктазой BglII: каждой белковой молекуле соответствует что. Смотреть фото каждой белковой молекуле соответствует что. Смотреть картинку каждой белковой молекуле соответствует что. Картинка про каждой белковой молекуле соответствует что. Фото каждой белковой молекуле соответствует чтоТаких участков оказывается два. В результате расщепления из плазмиды выщепляется короткий фрагмент: каждой белковой молекуле соответствует что. Смотреть фото каждой белковой молекуле соответствует что. Смотреть картинку каждой белковой молекуле соответствует что. Картинка про каждой белковой молекуле соответствует что. Фото каждой белковой молекуле соответствует чтоОстаётся укороченная линейная ДНК, содержащая интактный ген устойчивости к ампицилину и расщеплённый ген устойчивости к эритромицину. каждой белковой молекуле соответствует что. Смотреть фото каждой белковой молекуле соответствует что. Смотреть картинку каждой белковой молекуле соответствует что. Картинка про каждой белковой молекуле соответствует что. Фото каждой белковой молекуле соответствует чтоПри сшивании липких концов ДНК-лигазой наиболее часто будут соединяться концы этой молекулы и образовываться кольцо длиной 4163 нуклеотида. Такая ДНК будет сообщать клеткам устойчивость к ампицилину и не даст устойчивости к эритромицину. Второй фрагмент из-за небольшой длины не может замкнуться в кольцо. Второй вариант лигирования приводит к сшиванию липких концов двух фрагментов. Он происходит примерно в 10 раз реже, а после сшивки вторая пара липких концов скорее всего также, как и исходный фрагмент замкнётся в кольцо. Таких колец из пары фрагментов может образоваться 4 вида: димеры большого фрагмента в двух разных ориентациях (правый конец с левым концом второго фрагмента и левый конец с правым концом второго фрагмента или правый с правым и левый с левым) и соединения большого и малого фрагмента в двух разных ориентациях (вариант исходной плазмиды и инверсия малого фрагмента). Из них только в варианте исходной плазмиды восстанавливается устойчивость к эритромицину. Линейная молекула, образованная сшиванием двух фрагментов, может присоединить ещё один фрагмент с ещё в 10 раз меньшей частотой. Такие фрагменты в дальнейшем будут циклизоваться в плазмиды трёх размеров: из трёх больших фрагментов, из двух больших и одного малого и одного большого и двух малых. Три малых фрагмента дадут короткую последовательность, которая не сможет замкнуться в кольцо и существовать в клетке. В каждом размерном классе будет несколько вариантов с разной ориентацией фрагментов. Только в одном из них восстановится ген устойчивости к эритромицину: правый конец большого фрагмента соединяется с левым концом малого фрагмента, а правый конец малого фрагмента – с левым концом второго большого фрагмента, а оставшиеся концы двух больших фрагментов соединяются с образованием кольцевой плазмиды длиной 8363 пары нуклеотидов. Доля таких молекул будет менее 1% всех плазмид. Вероятность образования плазмид из 4 и более фрагментов ещё на порядок ниже и их обнаружение при данном числе полученных трансформированных клеток нереально. А. Так как расщепление рестриктазой не затрагивает ген устойчивости к ампицилину, все клетки, в результате трансформации получившие любую плазмиду, будут устойчивы к ампицилину и вырастут на среде с этим антибиотиком. Таким образом из 33506 выросших колоний плазмиду получили 578, выросших на ампицилине. Эффективность трансформации представляет долю трансформированных клеток от общего их числа, т.е. 573 : 51366 × 100% = 1.12% Б. На эритромицине могут вырасти только те клетки, в которые попали плазмиды, в которых в результате лигирования восстановится последовательность нуклеотидов в гене устойчивости к этому антибиотику, расщеплённому рестриктазой. Остальные плазмиды, полученные по приведённой методике, будут содержать либо ген с выщепленным коротким фрагментом, что приведёт либо к утрате стартового кодона (если обозначенный зелёным цветом кодон является стартовым), либо к сдвигу рамки считывания (т.к. число удалённых нуклеотидов не кратно трём), либо, при инверсии короткого фрагмента, к появлению стоп-кодонов т.е. прекращению синтеза белка. Таким образом большинство полученных плазмид не обеспечат устойчивости к эритромицину. В. Рост на эритромицине могут обеспечить только плазмиды, несущие восстановленную последовательность гена устойчивости. Такие плазмиды могли образоваться из одного большого и одного малого фрагмента (4200 пар, исходная плазмида)) или из двух больших и одного малого (8363 пары, начало и конец гена из разных копий большого фрагмента). Г. Получается 1 размер из одного большого фрагмента, два размерных класса из двух фрагментов и три размерных класса из трёх фрагментов, то есть 6 размерных классов. (В реальности различить по длине плазмиды, отличающиеся на длину малого фрагмента, т.е. менее чем на 0,5%, невозможно. Поэтому в эксперименте, например на электрофореграмме, будут видны лишь три размерных класса, соответствующие 1, 2 или 3 копиям большого фрагмента.)

pазбирался: Надежда | обсудить разбор | оценить

По принципу комплементарности строим

Источник

Самостоятельная работа «Белки: строение и функции»

Самостоятельная работа «Белки: строение и функции»

1. Аминокислоты отличаются друг от друга:

каждой белковой молекуле соответствует что. Смотреть фото каждой белковой молекуле соответствует что. Смотреть картинку каждой белковой молекуле соответствует что. Картинка про каждой белковой молекуле соответствует что. Фото каждой белковой молекуле соответствует чтоа) радикалом;

в) карбоксильной группой;

г) химическим составом.

2. Определите, что изображено на рисунке:

3. Для большинства белков характерна структура пространственной организации молекулы:

4. Одна из важнейших функций белков:

5. Все белки состоят из:

б) нуклеиновых кислот;

6. Молекулы белков отличаются друг от друга:

а) последовательностью чередования аминокислот;

б) количеством аминокислот в молекуле;

в) формой третичной структуры;

г) всеми указанными особенностями.

7. К какой структуре белка относится глобула?

8. Денатурация – это:

а) регулирование физиологическими процессами организма;

б) утрата белковой молекулой своей структуры;

в) предохранение организма от чужеродных белков.

9. При понижении температуры активность ферментов:

б) периодически изменяется;

10. В каком из указанных процессов белки НЕ участвуют?

б) транспорт веществ;

в) кодирование наследственной информации.

11. Установите соответствие между протеидом и его особенностью:

1) нуклеопротеид а) содержит небелковый компонент – липид;

2) гликопротеид б) содержит небелковый компонент – углевод;

3) металлопротеид в) содержит небелковый компонент – атом металла;

4) липопротеид г) содержит небелковый компонент – НК.

Самостоятельная работа «Белки: строение и функции»

1. Белки живых организмов составляют:

2. Денатурация белка:

а) всегда обратима, так как белок легко восстанавливает свою естественную структуру;

б) редкий процесс, так как связи, формирующие пространственные структуры белка, очень прочные;

в) лежит в основе ферментативной функции белков;

г) не затрагивает первичную структуру.

3. Примером запасающей функции белков является:

а) накопление белков в семенах бобовых;

б) наличие белков в мембранах клеток;

в) участие белков в иммунном ответе организма;

г) возможность гемоглобина образовывать непрочные соединения с кислородом и углекислым газом.

4. Среди органических веществ первое место, как по количеству, так и по значению занимают:

г) нуклеиновые кислоты.

5. Вторичная структура белка поддерживается:

а) пептидными связями;

б) водородными связями;

в) дисульфидными связями;

г) всеми перечисленными видами связи.

6. Аминокислоты в молекуле белка соединены посредством:

в) водородной связи;

г) связи между радикалами кислот.

7. Цепочка из аминокислот, соединённых пептидной связью, обладает структурой:

8. Последовательность аминокислот в молекуле белка зависит от:

в) их случайного сочетания.

9. В защите организма от кровопотерь участвует:

10. Выбери функции характерные для белков:

а) каталитическая, защитная, транспортная;

б) кроветворная, рефлекторная;

11. Установите соответствие между структурной организацией белка и ее изображением:

каждой белковой молекуле соответствует что. Смотреть фото каждой белковой молекуле соответствует что. Смотреть картинку каждой белковой молекуле соответствует что. Картинка про каждой белковой молекуле соответствует что. Фото каждой белковой молекуле соответствует что1) первичная а) б) в) г)

Самостоятельная работа «Белки: строение и функции»

Какие соединения являются мономерами молекул белка?

Какая часть молекул аминокислот отличает их друг от друга?

Сколько из известных аминокислот участвуют в синтезе белков?

Посредством какой химической связи соединены между собой аминокислоты в молекуле белка первичной структуры?

В каких органеллах клетки синтезируются белки?

Какие структуры молекул белка способны нарушаться при денатурации, а затем вновь восстанавливаться?

Сколько энергии освобождается при расщеплении 1г белка?

Посредством какой химической связи поддерживается вторичная структура белковой молекулы?

Сколько известно незаменимых аминокислот?

Какие аминокислоты организм получает в готовом виде вместе с пищей?

Какие аминокислоты, синтезируются в организме?

Мономер белковой молекулы

Структура белковой молекулы, возникающая в результате соединения нескольких глобул в сложный комплекс.

Структура белковой молекулы, представляющая линейную последовательность аминокислот, в составе полипептидной цепи.

Белки, состоящие только из аминокислот.

Структура белка, возникающая в результате образования водородных связей между СО– и NН–группами разных аминокислотных остатков полипептидной цепи.

Белки, содержащие небелковую часть.

Утрата белковой молекулой природной структуры, под воздействием температуры, химических веществ, обезвоживания, облучения и других факторов.

Белки, содержащие в себе углеводы, жиры, нуклеиновые кислоты.

Белок, состоящий только из белковых молекул.

Изменяемой частью аминокислоты является.

Восстановление утраченных структур.

Самостоятельная работа «Белки: строение и функции»

Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

каждой белковой молекуле соответствует что. Смотреть фото каждой белковой молекуле соответствует что. Смотреть картинку каждой белковой молекуле соответствует что. Картинка про каждой белковой молекуле соответствует что. Фото каждой белковой молекуле соответствует что

Курс повышения квалификации

Дистанционное обучение как современный формат преподавания

каждой белковой молекуле соответствует что. Смотреть фото каждой белковой молекуле соответствует что. Смотреть картинку каждой белковой молекуле соответствует что. Картинка про каждой белковой молекуле соответствует что. Фото каждой белковой молекуле соответствует что

Курс профессиональной переподготовки

Методическая работа в онлайн-образовании

каждой белковой молекуле соответствует что. Смотреть фото каждой белковой молекуле соответствует что. Смотреть картинку каждой белковой молекуле соответствует что. Картинка про каждой белковой молекуле соответствует что. Фото каждой белковой молекуле соответствует что

Курс повышения квалификации

Современные педтехнологии в деятельности учителя

Ищем педагогов в команду «Инфоурок»

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

также Вы можете выбрать тип материала:

Общая информация

Похожие материалы

Рабочая программа по биологии 8 класс

Открытый урок «День земли»

Проект » Экология родного края»

Презентация «Методы биологических исследований. Значение биологии»

Самостоятельная работа “Средообразующая деятельность живого вещества. Круговорот веществ – основа целостности биосферы. Биосфера и здоровье человека”

Презентация «Влияние наркотиков на подростков»

Презентация «Бронхиальной астмы, как одно из острых состояний организма. Причины, симптомы, приступы, доврачебная помощь».

Самостоятельная работа “Пластиды и митохондрии. Рибосомы”

Не нашли то что искали?

Воспользуйтесь поиском по нашей базе из
5354775 материалов.

Вам будут интересны эти курсы:

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

Безлимитный доступ к занятиям с онлайн-репетиторами

Выгоднее, чем оплачивать каждое занятие отдельно

каждой белковой молекуле соответствует что. Смотреть фото каждой белковой молекуле соответствует что. Смотреть картинку каждой белковой молекуле соответствует что. Картинка про каждой белковой молекуле соответствует что. Фото каждой белковой молекуле соответствует что

каждой белковой молекуле соответствует что. Смотреть фото каждой белковой молекуле соответствует что. Смотреть картинку каждой белковой молекуле соответствует что. Картинка про каждой белковой молекуле соответствует что. Фото каждой белковой молекуле соответствует что

Минпросвещения сформирует новый федеральный перечень учебников

Время чтения: 2 минуты

каждой белковой молекуле соответствует что. Смотреть фото каждой белковой молекуле соответствует что. Смотреть картинку каждой белковой молекуле соответствует что. Картинка про каждой белковой молекуле соответствует что. Фото каждой белковой молекуле соответствует что

Учителям предлагают 1,5 миллиона рублей за переезд в Златоуст

Время чтения: 1 минута

каждой белковой молекуле соответствует что. Смотреть фото каждой белковой молекуле соответствует что. Смотреть картинку каждой белковой молекуле соответствует что. Картинка про каждой белковой молекуле соответствует что. Фото каждой белковой молекуле соответствует что

Путин поручил не считать выплаты за классное руководство в средней зарплате

Время чтения: 1 минута

каждой белковой молекуле соответствует что. Смотреть фото каждой белковой молекуле соответствует что. Смотреть картинку каждой белковой молекуле соответствует что. Картинка про каждой белковой молекуле соответствует что. Фото каждой белковой молекуле соответствует что

ОНФ проверит качество охраны в российских школах

Время чтения: 2 минуты

каждой белковой молекуле соответствует что. Смотреть фото каждой белковой молекуле соответствует что. Смотреть картинку каждой белковой молекуле соответствует что. Картинка про каждой белковой молекуле соответствует что. Фото каждой белковой молекуле соответствует что

В России предложили учредить День семейного волонтерства

Время чтения: 2 минуты

каждой белковой молекуле соответствует что. Смотреть фото каждой белковой молекуле соответствует что. Смотреть картинку каждой белковой молекуле соответствует что. Картинка про каждой белковой молекуле соответствует что. Фото каждой белковой молекуле соответствует что

В Ленобласти педагоги призеров и победителей олимпиады получат денежные поощрения

Время чтения: 1 минута

Подарочные сертификаты

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.

Источник

О живой материи. Белки

Более 4 млрд лет назад на Земле из маленьких неорганических молекул непостижимым образом возникли белки, ставшие строительными бло­ками живых организмов. Своим бес­конечным разнообразием всё живое обязано именно уникальным молеку­лам белка, и иные формы жизни во Вселенной науке пока неизвестны.

Белки, или протеины (от греч. «протос» — «первый»), — это природ­ные органические соединения, кото­рые обеспечивают все жизненные процессы любого организма. Из бел­ков построены хрусталик глаза и па­утина, панцирь черепахи и ядовитые вещества грибов. С помощью белков мы перевариваем пищу и боремся с болезнями. Благодаря особым белкам по ночам светятся светлячки, а в глу­бинах океана мерцают таинствен­ным светом медузы.

Белковых молекул в живой клетке во много раз больше, чем всех других (кроме воды, разумеется!). Учёные вы­яснили, что у большинства организ­мов белки составляют более полови­ны их сухой массы. И разнообразие видов белков очень велико — в одной клетке такого маленького организма, как бактерия Escherichia сой’ (см. до­полнительный очерк «Объект иссле­дования — прокариоты»), насчиты­вается около 3 тыс. различных белков.

БИОЛОГИЧЕСКИЕ «БУСЫ»

Молекула белка очень длинная. Хими­ки называют такие молекулы поли­мерными (от греч. «поли» — «много» и «мерос» — «часть», «доля»). Действи­тельно, длинная молекула полимера состоит из множества маленьких мо­лекул, связанных друг с другом. Так нанизываются на нить бусинки в ожерелье. В полимерах роль нити иг­рают химические связи между бусин­ками-молекулами.

Секрет белков спрятан в особен­ностях этих самых бусинок. Боль­шинство полимеров не принимает устойчивой формы в пространстве, уподобляясь тем же бусам, у которых и не может быть пространственной структуры: повесишь их на шею — они примут форму кольца или овала, положишь в коробку — свернутся в клубок неопределённой формы. А те­перь представим себе, что некоторые бусинки могут «слипаться» друг с другом. Например, красные притяги­ваются к жёлтым. Тогда вся цепочка примет определённую форму, обязан­ную своим существованием «слипа-нию» жёлтых и красных бусинок

Нечто подобное происходит и в белках. Отдельные маленькие моле­кулы, входящие в состав белка, обла­дают способностью «слипаться», так как между ними действуют силы при­тяжения. В результате у любой белко­вой цепи есть характерная только для неё пространственная структура. Именно она определяет чудесные свойства белков. Без такой структуры они не могли бы выполнять те функ­ции, которые осуществляют в живой клетке.

При длительном кипячении бел­ков в присутствии сильных кислот или щелочей белковые цепи распада­ются на составляющие их молекулы, называемые аминокислотами. Амино­кислоты — это и есть те «бусинки», из которых состоит белок, и устроены они сравнительно просто.

КАК УСТРОЕНА АМИНОКИСЛОТА

В природе встречаются также ами­нокислоты, в которых NH^-группа связана с более отдалёнными от кар­боксильной группы атомами углеро­да. Однако для построения белков природа выбрала именно а-аминокислоты. Это обусловлено прежде всего тем, что только а-аминокислоты, соединённые в длинные цепи, способны обеспечить достаточную прочность и устойчивость структуры больших белковых молекул.

Число а-аминокислот, различа­ющихся R-группой, велико. Но чаще других в белках встречается всего 20 разных аминокислот. Их можно рас­сматривать как алфавит «языка» бел­ковой молекулы. Химики называют эти главные аминокислоты стандарт­ными, основными или нормальными. Условно основные аминокислоты де­лят на четыре класса.

Для нормальной жизнедеятельно­сти организм нуждается в полном на­боре из 20 основных a-Z-аминокислот. Но одни из них могут быть синтезиро­ваны в клетках самого организма, а другие — должны поступать в готовом виде из пищевых продуктов. В пер­вом случае аминокислоты называют заменимыми, а во втором — незамени­мыми. Набор последних для разных организмов различен. Например, для белой крысы незаменимыми являют­ся 10 аминокислот, а для молочнокислых бактерий — 16. Растения могут са­мостоятельно синтезировать самые разнообразные аминокислоты, созда­вать такие, которые не встречаются в белках.

ЧТО ТАКОЕ ПЕПТИД

Полимерная молекула белка образует­ся при соединении в длинную цепоч­ку бусинок-аминокислот. Они нани­зываются на нить химических связей благодаря имеющимся у всех амино­кислот амино- и карбоксильной груп­пам, присоединённым к а-атому угле­рода.

Образующиеся в результате такой реакции соединения называются пеп-тидами; (—СО— NH —группировка в них — это пептидная группа, а связь между атомами углерода и азота — пептидная связь (её ещё называют амидной). Соединяя аминокислоты посредством пептидных связей, мож­но получить пептиды, состоящие из остатков очень многих аминокислот. Такие соединения получили название полипептиды. Полипептидное стро­ение белковой молекулы доказал в 1902 г. немецкий химик Эмиль Гер­ман Фишер.

Общее число аминокислотных ос­татков в белковой молекуле изменя­ется в очень широких пределах. Так, человеческий инсулин состоит из 51 аминокислотного остатка, а лизо-цим молока кормящей матери — из 130. В гемоглобине человека 4 ами­нокислотные цепочки, каждая из которых построена из примерно 140 аминокислот. Существуют белки, имеющие почти 3 тыс. аминокис­лотных остатков в единой цепи.

Молекулярные массы белков лежат в диапазоне примерно от 11 тыс. для малых белков, состоящих из 100 ами­нокислотных остатков, до 1 млн и бо­лее для белков с очень длинными полипептидными цепями или для белков, состоящих из нескольких по-липептидных цепей.

Возникает вопрос: как же всё ог­ромное многообразие белков с раз­личными функциями и свойствами может быть создано всего из 20 мо­лекул? А разгадка этого секрета при­роды проста — каждый белок имеет свой неповторимый аминокислот­ный состав и уникальный порядок со­единения аминокислот, называемый первичной структурой белка.

СПИРАЛИ И СЛОИ

В начале 50-х гг. XX в. американские химики Лайнус Карл Полинг (1901— 1994), награждённый Нобелевской премией за исследования природы химической связи, и Роберт Кори (1897—1971) предположили, что не­которые участки аминокислотной це­почки в белках закручены в спираль. Благодаря совершенствованию экс­периментальных методов (структуру белков изучают с помощью рентгенов­ских лучей) через несколько лет эта гениальная догадка подтвердилась.

Действительно, полипептидные цепи очень часто образуют спираль, закрученную в правую сторону. Это первый, самый низкий уровень про­странственной организации белко­вых цепочек Здесь-то и начинают иг­рать роль слабые взаимодействия «бусинок»-аминокислот: группа С=0 и группа N — H из разных пептидных связей могут образовывать между со­бой водородную связь. Оказалось, что в открытой Полингом и Кори спирали такая связь образована меж­ду группой С=0 каждой г-й аминокис­лоты и группой N — H ( i + 4)-й амино­кислоты, т. е. между собой связаны аминокислотные остатки, отстоящие друг от друга на четыре «бусинки». Эти водородные связи и стабилизиру­ют такую спираль в целом. Она полу­чила название a.-спирали.

Позднее выснилось, что а-спираль — не единственный способ ук­ладки аминокислотных цепочек. По­мимо спиралей они образуют ещё и слои. Благодаря всё тем же водород­ным связям между группами С=0 и N — H друг с другом могут «слипаться» сразу несколько разных фрагментов одной полипептидной цепи. В резуль­тате получается целый слой — его на­звали ^-слоем.

В большинстве белков а-спирали и р-слои перемежаются всевозможными изгибами и фрагментами цепи без какой-либо определённой структуры. Когда имеют дело с пространствен­ной структурой отдельных участков белка, говорят о вторичной структу­ре белковой молекулы.

БЕЛОК В ПРОСТРАНСТВЕ

Для того чтобы получить полный «портрет» молекулы белка, знания первичной и вторичной структуры недостаточно. Эти сведения ещё не дают представления ни об объёме, ни о форме молекулы, ни тем более о расположении участков цепи по отношению друг к другу. А ведь все спирали и слои каким-то образом размещены в пространстве. Общая пространственная структура поли-пептидной цепи называется третич­ной структурой белка.

При образовании третичной струк­туры белка наконец-то проявляют активность R-группы — боковые це­пи аминокислот. Именно благодаря им «слипаются» между собой боль­шинство «бусинок»-аминокислот, придавая цепи определённую форму в пространстве.

В живом организме белки всегда находятся в водной среде. А самое большое число основных аминокис­лот — восемь — содержат неполяр­ные R-группы. Разумеется, белок стремится надёжно спрятать внутрь своей молекулы неполярные боковые цепи, чтобы ограничить их контакт с водой. Учёные называют это воз­никновением гидрофобных взаимо­действий (см. статью «Мельчайшая единица живого»).

Благодаря гидрофобным взаимо­действиям вся полипептидная цепоч­ка принимает определённую форму в пространстве, т. е. образует третич­ную структуру.

В молекуле белка действуют и дру­гие силы. Часть боковых цепей основ­ных аминокислот заряжена отрица­тельно, а часть — положительно. Так как отрицательные заряды притяги­ваются к положительным, соответст­вующие «бусинки» «слипаются». Элек­тростатические взаимодействия, или, как их называют иначе, солевые мос­тики, — ещё одна важная сила, ста­билизирующая третичную структуру.

У семи основных аминокислот есть полярные боковые цепи. Между ними могут возникать водородные связи, тоже играющие немалую роль в поддержании пространственной структуры белка.

Между двумя аминокислотными остатками цистеина иногда образу­ются ковалентные связи (— S —S—), которые очень прочно фиксируют расположение разных участков бел­ковой цепи по отношению друг к другу. Такие связи называют дисуль-фидными мостиками. Это самые не­многочисленные взаимодействия в белках (в некоторых случаях они во­обще отсутствуют), зато по прочно­сти они не имеют равных.

ВЫСШИЙ УРОВЕНЬ ПРОСТРАНСТВЕННОЙ ОРГАНИЗАЦИИ БЕЛКОВ

Молекула белка может состоять не из одной, а из нескольких полипептидных цепей. Каждая такая цепь представляет собой самостоятельную пространственную структуру — субъединицу. Например, белок гемогло­бин состоит из четырёх субъединиц, которые образуют единую молекулу, располагаясь в вершинах почти пра­вильного тетраэдра. Субъединицы «прилипают» друг к другу благодаря тем же самым силам, что стабилизи­руют третичную структуру. Это гид­рофобные взаимодействия, солевые мостики и водородные связи.

Если белок состоит из нескольких субъединиц, говорят, что он обладает четвертичной структурой. Такая структура представляет собой высший уровень организации белковой моле­кулы. В отличие от первых трёх уров­ней четвертичная структура есть дале­ко не у всех белков. Приблизительно половина из известных на сегодняш­ний день белков её не имеют.

ПОЧЕМУ БЕЛКИ БОЯТСЯ ТЕПЛА

Связи, поддерживающие пространст­венную структуру белка, довольно лег­ко разрушаются. Мы с детства знаем, что при варке яиц прозрачный яич­ный белок превращается в упругую белую массу, а молоко при скисании загустевает. Происходит это из-за раз­рушения пространственной структуры белков альбумина в яичном белке и ка­зеина (огглат. caseus — «сыр») в моло­ке. Такой процесс называется денату­рацией. В первом случае её вызывает нагревание, а во втором — значи­тельное увеличение кислотности (в результате жизнедеятельности обита­ющих в молоке бактерий). При дена­турации белок теряет способность выполнять присущие ему в организме функции (отсюда и название процес­са: от лат. denaturare — «лишать при­родных свойств»). Денатурированные белки легче усваиваются организмом, поэтому одной из целей термической обработки пищевых продуктов яв­ляется денатурация белков.

ЗАЧЕМ НУЖНА ПРОСТРАНСТВЕННАЯ СТРУКТУРА

В природе почти ничего не происхо­дит случайно. Если белок принял определённую форму в пространстве, это должно служить достижению ка­кой-то цели. Действительно, только бе­лок с «правильной» пространственной структурой может обладать опреде­лёнными свойствами, т. е. выполнять те функции в организме, которые ему предписаны. А делает он это с помо­щью всё тех же R-групп аминокислот. Оказывается, боковые цепи не толь­ко поддерживают «правильную» фор­му молекулы белка в пространстве. R-группы могут связывать другие орга­нические и неорганические молекулы, принимать участие в химических ре­акциях, выступая, например, в роли ка­тализатора.

Часто сама пространственная ор­ганизация полипептидной цепи как раз’ и нужна для того, чтобы сосредо­точить в определённых точках про­странства необходимый для выполне­ния той или иной функции набор боковых цепей. Пожалуй, ни один процесс в живом организме не прохо­дит без участия белков.

В ЧЁМ СЕКРЕТ ФЕРМЕНТОВ

Все химические реакции, протекаю­щие в клетке, происходят благодаря особому классу белков — фермен­там. Это белки-катализаторы. У них есть свой секрет, который позволяет им работать гораздо эффективнее других катализаторов, ускоряя реак­ции в миллиарды раз.

Предположим, что несколько при­ятелей никак не могут встретиться. Но стоило одному из них пригласить друзей на день рождения, как резуль­тат не заставил себя ждать: все оказа­лись в одном месте в назначенное время.

Чтобы встреча состоялась, понадо­билось подтолкнуть друзей к контак­ту. То же самое делает и фермент. В его молекуле есть так называемые центры связывания. В них расположе­ны привлекательные для определён­ного типа химических соединений (и только для них!) «уютные кресла» — R-группы, связывающие какие-то уча­стки молекул реагирующих веществ. Например, если одна из молекул име­ет неполярную группу, в центре свя­зывания находятся гидрофобные бо­ковые цепи. Если же в молекуле есть отрицательный заряд, его будет под­жидать в молекуле фермента R-груп па с положительным зарядом.

В результате обе молекулы реаген­тов связываются с ферментом и ока­зываются в непосредственной близо­сти друг от друга. Мало того, те их группы, которые должны вступить в химическую реакцию, сориентирова­ны в пространстве нужным для реак­ции образом. Теперь за дело прини­маются боковые цепи фермента, играющие роль катализаторов. В фер­менте все «продумано» таким обра­зом, что R-группы-катализаторы тоже расположены вблизи от места собы­тий, которое называют активным центром. А после завершения реак­ции фермент «отпускает на волю» мо­лекулы-продукты (см. статью «Фер­менты — на все руки мастера»).

ОТКУДА БЕРЁТСЯ ИММУНИТЕТ

Белки выполняют в организме мно­жество функций; они, например, за­щищают клетки от нежелательных вторжений, предохраняют их от по­вреждений. Специальные белки — антитела обладают способностью распознавать проникшие в клетки бактерии, вирусы, чужеродные поли­мерные молекулы и нейтрализовывать их.

У высших позвоночных от чуже­родных частиц организм защищает иммунная система. Она устроена так, что организм, в который вторг­лись такие «агрессоры» — антигены, начинает вырабатывать антитела. Молекула антитела прочно связыва­ется с антигеном: у антител, как и у ферментов, тоже есть центры связы­вания. Боковые цепи аминокислот расположены в центрах таким обра­зом, что антиген, попавший в эту ло­вушку, уже не сможет вырваться из «железных лап» антитела. После свя­зывания с антителом враг выдворяет­ся за пределы организма.

Можно ввести в организм неболь­шое количество некоторых полимер­ных молекул, входящих в состав бак­терий или вирусов-возбудителей какой-либо инфекционной болезни.

В организме немедленно появятся соответствующие антитела. Теперь попавший в кровь или лимфу «насто­ящий» болезнетворный микроб тот­час же подвергнется атаке этих анти­тел, и болезнь будет побеждена. Такой способ борьбы с инфекцией есть не что иное, как нелюбимая многими прививка. Благодаря ей организм приобретает иммунитет к инфекци­онным болезням.

ДЛЯ ЧЕГО В ГЕМОГЛОБИНЕ ЖЕЛЕЗО

В природе существуют белки, в ко­торых помимо аминокислот содер­жатся другие химические компонен­ты, такие, как липиды, сахара, ионы металлов. Обычно эти компоненты играют важную роль при выполне­нии белком его биологической функ­ции. Так, перенос молекул и ионов из одного органа в другой осуществля­ют транспортные белки плазмы крови. Белок гемоглобин (от греч. «гема» — «кровь» и лат. globus — «шар», «шарик»), содержащийся в кровяных клетках — эритроцитах (от греч. «эритрос» — «красный» и «китос» — «клетка»), доставляет кис­лород от лёгких к тканям. В молеку­ле гемоглобина есть комплекс иона железа Fe 24 » со сложной органической молекулой, называемый гемам. Гемо­глобин состоит из четырёх белковых субъединиц, и каждая из них содер­жит по одному гему.

В связывании кислорода в лёгких принимает участие непосредственно ион железа. Как только к нему хотя бы в одной из субъединиц присоединя­ется кислород, сам ион тут же чуть-чуть меняет своё расположение в мо­лекуле белка. Движение железа «про­воцирует» движение всей аминокис­лотной цепочки данной субъединицы, которая слегка трансформирует свою третичную структуру.

Другая субъеди­ница, ещё не присоединившая кислород, «чувствует», что произошло с со­седкой. Её структура тоже начинает меняться. В итоге вторая субъедини­ца связывает кислород легче, чем пер­вая. Присоединение кислорода к третьей и четвёртой субъединицам происходит с ещё меньшими трудно­стями. Как видно, субъединицы помо­гают друг другу в работе. Для этого-то гемоглобину и нужна четвертичная структура. Оксид углерода СО (в про­сторечии угарный газ) связывается с железом в геме в сотни раз прочнее кислорода. Угарный газ смертельно опасен для человека, поскольку ли­шает гемоглобин возможности при­соединять кислород.

А ЕЩЁ БЕЛКИ.

. Служат питательными веществами. В семенах многих растений (пшени­цы, кукурузы, риса и др.) содержатся пищевые белки. К ним относятся так­же альбумин — основной компонент яичного белка и казеин — главный белок молока. При переваривании в организме человека белковой пищи происходит гидролиз пептидных свя­зей. Белки «разбираются» на отдель­ные аминокислоты, из которых орга­низм в дальнейшем «строит» новые пептиды или использует для полу­чения энергии. Отсюда и название:

греческое слово «пептос» означает «переваренный». Интересно, что гид­ролизом пептидной связи управляют тоже белки — ферменты.

. Участвуют в регуляции клеточ­ной и физиологической активности. К подобным белкам относятся мно­гие гормоны (от греч. «гормао» — «по­буждаю»), такие, как инсулин, регули­рующий обмен глюкозы, и гормон роста.

. Наделяют организм способно­стью изменять форму и передвигать­ся. За это отвечают белки актин и ми­озин, из которых построены мышцы.

. Выполняют опорную и защитную функции, скрепляя биологические структуры и придавая им прочность. Кожа представляет собой почти чис­тый белок коллаген, а волосы, ногти и перья состоят из прочного нерас­творимого белка кератина.

ЧТО ЗАПИСАНО В ГЕНАХ

Последовательность аминокислот в белках кодируется генами, которые хранятся и передаются по наследству с помощью молекул ДНК (см. статьи «Хранитель наследственной инфор­мации. ДНК» и «Экспрессия генов»). Пространственную структуру белка задаёт именно порядок расположе­ния аминокислот. Получается, что не только первичная, но и вторичная, третичная и четвертичная структуры белков составляют содержание на­следственной информации. Следо­вательно, и выполняемые белками функции запрограммированы гене­тически. Громадный перечень этих функций позволяет белкам по праву называться главными молекулами жизни. Поэтому сведения о белках и есть то бесценное сокровище, кото­рое передаётся в природе от поколе­ния к поколению.

Интерес человека к этим органи­ческим соединениям с каждым годом только увеличивается. Сегодня учёные уже расшифровали структуру многих белковых молекул. Они выясняют функции самых разных белков, пыта­ются определить взаимосвязь функ­ций со структурой. Установление сходства и различий у белков, выпол­няющих аналогичные функции у раз­ных живых организмов, позволяет глубже проникать в тайны эволюции.

АМИНОКИСЛОТЫ — ПОКАЗАТЕЛИ ВОЗРАСТА

ЗА ЧТО СЕНГЕР ПОЛУЧИЛ НОБЕЛЕВСКИЕ ПРЕМИИ

При гидролизе белков до аминокислот (разрушении пептидной связи во­дой) теряется информация о последовательности их соединения. Поэто­му долгое время считали, что определение первичной структуры белка представляет собой совершенно безнадежную задачу. Но в 50-х гг. XX в. английский биохимик Фредерик Сенгер (родился в 1918 г.) смог расшиф­ровать последовательность аминокислот в полипептидных цепях гормо­на инсулина. За эту работу, на выполнение которой ушло несколько лет, в 1958 г. Сенгер был удостоен Нобелевской премии по химии (двадца­тью годами позже он совместно с У. Гилбертом получил вторую премию за вклад в установление первичной структуры ДНК).

Принципы определения аминокислотной последовательности, впервые сформулированные Сенгером, используются и ныне, правда, со всевоз­можными вариациями и усовершенствованиями. Процедура установле­ния первичной структуры белка сложна и многоступенчата: в ней около десятка различных стадий. Сначала белок расщепляют до отдельных ами­нокислот и устанавливают их тип и количество в данном веществе. На сле­дующей стадии длинную белковую молекулу расщепляют уже не полно­стью, а на фрагменты. Затем в этих фрагментах определяют порядок соединения аминокислот, последовательно отделяя их одну за другой. Расшепление белка на фрагменты проводят несколькими способами, что­бы в разных фрагментах были перекрывающиеся участки. Выяснив поря­док расположения аминокислот во всех фрагментах, получают полную ин­формацию о том, как аминокислоты расположены в белке. К концу XX в. созданы специальные приборы, определяющие последовательность амино­кислот в молекуле белка в автоматическом режиме — секвенаторы (от англ. sequence — «последовательность»).

МОЛОКО И КИСЛОМОЛОЧНЫЕ ПРОДУКТЫ

Молоко представляет собой коллоидный раствор жира в воде. Под микроскопом хорошо видно, что оно неоднородно: в бесцветном растворе (сыворотке) плавают жировые шарики.

Входящий в состав молока сахар лактоза С^НддО,, изомерен сахарозе. В организме человека под действием фермента лактазы этот сахар расщепляется на моносахариды глюкозу и галактозу, которые легко усваиваются. За счёт этого, например, грудные дети пополняют запасы углеводов. Интересно, что у многих людей (в основном у представителей монголоидной расы) организм в зрелом возрасте утрачивает способность расщеплять лактозу.

Проходя через пищеварительный тракт, лактоза не усваивается, а становится питательной средой для развития различных болезнетворных микроорганизмов, что приводит к общему недомоганию. Именно поэтому народы Дальнего Востока (японцы, китайцы) практически не употребляют в пишу молочные продукты.

с„н„о„ + н,о =лактоза == 4СНзСН(ОН)СООН. молочная (2-гидроксипропановая) кислота

Именно молочная кислота определяет специфический вкус кефира. По мере того как она накапливается в растворе, происходит коагуляция (свёртывание)казеина, который выделяется в свободном виде. Поэтому кефир имеет более густую консистенцию, чем молоко. Молочнокислое сбраживание лактозы сопровождается спиртовым брожением, из-за чего в кисломолочных продуктах, в частности в кефире, есть небольшое количество алкоголя (до 0,03 %). В кисломолочных продуктах содержатся также микроорганизмы, которые подавляют развитие болезнетворных бактерий и тем самым улучшают пишеварение.

Творог тоже получают сквашиванием молока молочнокислыми бактериями. Его главной составной частью является белок казеин.

МЕДНАЯ КРОВЬ

Кроме кальмаров, кислород переносится “голубой кровью” также у десятиногих ракообразных (омары, крабы, креветки). Гемоиианин найден у всех головоногих моллюсков (осьминоги, кальмары, каракатицы), разнообразных улиток, пауков и др. А вот у морских гребешков, устриц и других двустворчатых моллюсков его нет.

Из гемоиианина нетрудно полностью извлечь медь. Аля этого достаточно обработать белок в отсутствие кислорода реактивом, который прочно связывается с ионами одновалентной меди. Таким же способом можно определить содержание меди в гемоиианине. Лишённый этого металла, он теряет способность переносить кислород. Но если потом ввести в раствор белка ионы Си»1′, гемоиианин восстанавливает свою физиологическую активность.

Так было доказано, что в отсутствие кислорода медь гемоиианина находится в степени окисления +1. При избытке же этого газа происходит частичное окисление металла. При этом всегда на одну связанную гемоиианином молекулу кислорода приходится два атома меди. Таким образом, кислород окисляет ровно половину атомов меди. Это ещё одно отличие гемоиианина от значительно более распространённого в животном мире гемоглобина, в котором все атомы железа равноценны и имеют заряд +2 как в свободном состоянии, так и в комплексе с кислородом.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *