каменная мука для бетона это

Бетонные полы

Каменная мука

Каменная мука активно используется в качестве минеральной добавки в бетоны. Применение каменной муки позволяет придать бетонным растворам определенные строительно-технологические свойства, увеличить прочностные характеристики бетона, повысить коррозионную стойкость, уменьшить водопоглощение и усадку бетона.

Термин «Каменная мука» носит собирательный характер. Под этим названием объединены тонкодисперсные наполнители различных минералов, отличающиеся между собой химическим составом, физико-механическими свойствами, кристаллической структурой и т.д.

Введение тонкодисперсных наполнителей в бетон позволяет получить максимально плотную упаковку частиц в массе бетона и как следствие повысить плотность структуры бетона. Одновременно, каменная мука способствует выведению «защемленного» воздуха в бетонной смеси, понижая образование пор в массе бетона. Использование тонкодисперсного наполнителя в значительной степени снижает капиллярную пористость контактной зоны, тем самым повышая марку водонероницаемости цементного состава.

В обычных портландцементных бетонах зона контакта связующее/заполнитель менее плотная, чем массивное тесто и представляет собой большое количество пластинчатых кристаллов гидрооксида кальция расположенных перпендикулярно поверхности заполнителя. Добавка каменной муки в бетонные смеси приводит к уплотнению контактной зоны между цементом и заполнителем, обеспечивая более плотное сцепление.

В зависимости от марки цемента и технологических характеристик смеси процент ввода каменной муки может существенно меняться. Необходимо помнить, что при достижении определенного уровня насыщения бетона каменной мукой дальнейшее увеличение концентрации наполнителя приводит к разбавлению цементного камня и уменьшению прочности бетона.

Составы бетонов и кинетика нарастания их прочности*

Составы бетонов, кг

Прочность при сжатии, МПа через, сут.

Источник

Применение микрокальцита в бетоне

каменная мука для бетона это. Смотреть фото каменная мука для бетона это. Смотреть картинку каменная мука для бетона это. Картинка про каменная мука для бетона это. Фото каменная мука для бетона это

Микрокальцит – минеральный наполнитель высокого качества, который применяют в качестве добавки к бетону и не только. Каменная мука улучшает строительные свойства бетонного раствора: делает его прочнее, повышает стойкость к коррозии и уменьшает поглощение жидкости. В компании Техноимпекс можно купить микрокальцит в Москве по выгодной цене.

Использование при бетонировании

Микрокальцит находит широкое применение в промышленности. Его используют для обмазывания сварочных электродов.

Непосредственно в бетонах высокой прочности каменную муку (собирательное название материала) используют в качестве закрашивающего наполнителя. С ее помощью изготовляется ряд строительных смесей, среди которых:

Свойства материала и его особенности

Тонкодисперсные бетонные наполнители приобрели широкую распространенность в промышленности и производстве, так как придают бетону ряд дополнительных свойств:

При создании бетонных смесей с использованием микрокальцита необходимо особо учитывать технологические характеристики цемента. Они напрямую влияют на количество вводимой в состав каменной муки. Нужно учитывать, что существует предельное значение применения этого компонента, превышение которого не только не улучшит качество бетона, а наоборот, ухудшит его.

Для бетона с низкой долей цемента используют не менее 50% микрокальцита от массы цемента. В пластифицированных бетонных составах каменная мука значительно повышает их прочность, а в пластичных бетонных растворах – это снижает замедляющее действие суперпластификаторов.

Микрокальцит используется в бетонных смесях для заливки и выравнивания полов. Может применяться мраморная, кварцевая мука или каолинит. Он находит применение не только при бетонировании, но также при производстве бумажной продукции, пластика, лаков, красок, грунтовок, линолеума, резины, чистящих порошков и многого другого. Это делает покупку данного материала неимоверно актуальной. Достичь результата можно только при выборе качественного продукта.

Источник

БЕТОНЫ НОВОГО ПОКОЛЕНИЯ ч.1

В.И. Калашников,

С.В. Ананьев,

Ю.С. Кузнецов,

В.Л. Хвастунов,

М.Н. Мороз

Пензенский государственный университет архитектуры и строительства

бетоны нового поколения с низким удельным расходом

цемента на единицу прочности

1. Малоцементные пластифицированные бетоны с оптимальным соотношением молотых, очень мелких и средних песков в реологической матрице

Прогресс в технике высокопрочного бетона 70-80 г.г. ХХ века с прочностью на сжатие 50-70 МПа из жестких бетонных смесей переместился в область особовысокопрочных и сверхпрочных бетонов с прочностью на сжатие 100-200 МПа из нерасслаивающихся жидкотекучих бетонных смесей, с уменьшением предела текучести на 4-5 порядков по сравнению с уплотненными жесткими смесями. Этому способствовали три революционных этапа в эволюции бетона: изобретение супер- и гиперпластификаторов (СП и ГП), тонкой и прочной фибры и плотных микропуццоланических добавок – микрокремнеземов (МК). Наиболее важное преимущество таких бетонов состоит в достижении ими прочности, превышающей в 1,5-1,6 раза прочность цементного камня из литой суперпластифицированной цементной суспензии с гиперпластификатором. Достижение низкой пористости, высокой прочности, равной 140-150 МПа, с обеспечением значительной трещиностойкости, малой усадки (хотя расход цемента достигает 600-700 кг/м 3 ) такого композиционного материала, в котором отсутствует свободная известь, открывает значительные перспективы для производства малоцементных щебеночных бетонов марок 200-500 с использованием принципов создания высокопрочных бетонов. Это чрезвычайно актуально для России, в которой высокопрочные и особовысокопрочные бетоны классов В100-120, практически не востребованы.

Мы считаем, что четвертым революционным этапом в технологии высокопрочных бетонов, являются реакционно-активные и реологически-активные минеральные порошки, в частности, каменная мука из молотых горных пород, без наличия которой в структуре реологической матрицы невозможно получение бетонов класса В120-150 и более из самоуплотняющихся бетонных смесей. Некоторые материаловеды не соглашаются с таким категоричным утверждением, но без каменной муки эффективные бетоны не будут изготавливаться в будущем вообще.

Сухие реакционно-порошковые смеси, состоящие из цемента, МК, каменной муки и очень мелкого песка, из которых можно изготавливать высокопрочные (ВПБ) и особовысокопрочные бетоны (ОВБ), согласно нашим исследованиям [1], безусловно, в будущем станут бетонами нового поколения, когда материаловеды освоят технологию их производства, а конструкторы – методы их применения в конструкциях. Если говорить о настоящем времени, то сухие реакционно-порошковые бетонные смеси (СРПБС) – это не просто готовые смеси для высокопрочных бетонов, это самый эффективный вид композиционного вяжущего (цементирующая связка) для различного вида бетонов. В наибольшей степени, это композиционное вяжущее необходимо для бетонов марок М100-М600, производство которых в России достигает 98%. Можно с уверенностью утверждать, что в будущем цементное вяжущее будет заменяться на более прочное, более трещиностойкое сухое реакционно-порошковое вяжущее (СРПВ), исходя из целого ряда позитивных факторов. Сферы применения СРПБС и результаты использования их изложены в [1]. Однако, более поздние экспериментальные работы кафедры ТБКиВ позволили получить за счет изменения рецептуры уникальные бетоны нового поколения с высокими технико-экономическими показателями без использования нанометрических частиц микрокремнезема. Необходимо отметить, что мы не обнаружили сообщений ни в отечественной, ни в иностранной литературе о подобных бетонах.

В связи с этим не следует искать прорывных технологий в производстве бетона, в виде нанотехнологий. Прорывные микротехнологии бетонов уже «лежат на поверхности» с наивысшей технико-экономической эффективностью за всю историю развития бетона и дожидаются своей реализации.

Очень будет жаль тех материальных средств, потраченных на «прорывные нанотехнологии» для модификации наночастицами высокодефектных (макродефектных) бетонов «пробивными» специалистами, оставив вне внимания разработанные технологии малодефектных (нано- и микродефектных) высокопрочных, особовысокопрочных бетонов с повышенными расходами цементов и рядовых бетонов марок 200-500 с расходами цемента 150-210 кг/м 3 с использованием основных революционных достижений в эволюции бетонов.

Если говорить о выборе базового материала, следуя ТЭО нанотехнологий, рассмотренного в работе [2], то для бетонов базовой оценкой являются реакционно-порошковые и щебеночные бетоны нового поколения классов В120-150 с каменной мукой, плотными пуццоланическими добавками и с СП и ГП. Для цементов базовой оценкой их прочности в тесте нормальной густоты являются цементные реакционно-порошковые смеси для порошковых бетонов с низким удельным расходом цемента на единицу прочности, равным 3-5 кг/МПа, водопоглощением по массе 0,5-1,0%!, морозостойкостью более 1000 циклов.

Строящиеся цементные заводы должны своевременно изменить свои приоритеты и не только производить портландцемент для широкого потребителя в больших объемах, но и запланировать производство СРПБС с установкой помольных линий. В структуре цементного завода для этого имеется все необходимое: сушильное оборудование, отходящие газы, помольное оборудование, силосные склады, упаковочные линии.

Сухие реакционно-порошковые смеси должны изготавливаться, как минимум, четырехкомпонентными: цемент, гиперпластификатор, дисперсный молотый наполнитель в виде каменной муки, тонкозернистый песок. В отдельных случаях должен использоваться микрокремнезем в количестве 5-25% к массе цемента.

Чем обусловлена высокая эффективность СРПБС по сравнению с портландцементами, даже высоких марок М550-600 Д0, которые практически не выпускаются в России? Во-первых, в обеспечении высокой текучести и взвешивающей способности, позволяющей не расслаиваться щебеночным бетонам. Во-вторых – в сбалансированности состава, при котором портландит силикатных клинкерных минералов связывается микрокремнеземом тончайшими частицами кремнеземсодержащих реакционно-активных горных пород. При этом «балластный» гидроксид кальция замещается в порах цементного камня высокопрочными гидросиликатами кальция.

Выбор молотого кварцевого песка или горных пород, содержащих кварц или кремнеземсодержащие стекла, наиболее желателен. Тончайшие частицы таких пород связываются с известью в ранние сроки, а более крупные – в поздние сроки твердения, что снижает долю стехиометрически необходимого микрокремнезема или вообще способствуют исключению его. Крупнокристаллический портландит превращается в нанометрический гидросиликат кальция. Молотые известняки, обладающие реологической активностью, но не реагирующие с известью, менее предпочтительны, особенно, для высокопрочных бетонов.

Химико-минералогический диапазон состава, используемой каменной муки, достаточно широк и требование сочетания в ней реакционно-химической и реологической активности может быть необязательным. Для бетонов марок М800-1000, мука может быть лишь реологически активной, например, из плотных и прочных известняков, доломитизированных известняков или доломитов. Для бетонов более высоких марок, хорошее сочетание реакционно-химической и реологической активности, выявлено нами в базальтовой, кварцево-дацитовой, гранитной, андезитовой муке и в ряде других молотых горных пород. Особое положение в ряду активностей занимает молотый кварцевый песок (наиболее распространенная порода во многих регионах), который в индивидуальном виде не обладает реологической активностью, но кардинально повышает ее в смеси с цементом в суспензиях с СП. Реологическая активность молотого кварцевого песка и других кислых пород «пробуждается» в смеси с цементом или с известью в результате перезарядки поверхности с отрицательной на положительную. Механизм перезарядки поверхности дисперсного кварца катионом кальция был выявлен нами в 80-х годах. Поэтому разработанная нами методика тестирования реологической активности каменной муки, предусматривает сравнение текучестей пластифицированных цементной суспензии и суспензий смешанного порошка из муки и цемента, взятых в соотношении 1:1÷1:2, при одинаковых дозировках гиперпластификатора. При этом определяется количество воды затворения.

Показателем реологической активности является водоредуцирующий эффект, вычисленный по водосодержанию контрольного и пластифицированных составов при одинаковых текучестях или одинаковых расплывах смеси из конуса Хагерманна (расплыв 25-30 см) или из цилиндра диаметром 50 мм и высотой 50 мм (расплыв 150±10 мм). Более высокий водоредуцирующий эффект суспензии на основе смеси цемента и муки по сравнению с цементной, является основным критерием, обеспечивающим получение высокопрочных бетонов. При этом суспензии должны обладать тиксотропным ресурсом продолжительного растекания (установленного нами в 80-х годах), не образовывать на поверхности розлива выступов и впадин, а капли суспензии, нанесенные на поверхность розлива, должны втягиваться в объемную фазу без образования полусферических или шаровых сегментных выступов [3].

Высокопрочные щебеночные бетоны М1000-М1500 получены нами из пластичных и жестких бетонных смесей. Более перспективно использование сухой реакционно-порошковой смеси для получения бетонов как высоких, так и низких марок.

При производстве бетонов для заводской технологии сборного железобетона то соотношение компонентов в бетонных смесях, уплотняемых механическими способами различной интенсивности, должно радикально меняться в сравнении с соотношением компонентов в высокопрочных самоуплотняющихся бетонах (рис. 1).

Рис. 1 Концепция формирования составов высокоэффективных бетонов

от сверхпрочных самоуплотняющихся до рядовых с различной интенсивностью механического уплотнения

Концепция формирования состава при переходе от самоуплотняющихся сверхпрочных бетонов до высокоэффективных с более низкой прочностью заключается в трансформации реологических матриц, обеспечивающих рациональную реологию каждого состава. При этом микродисперсные и тонкозернистые компоненты реологической матрицы – каменная мука и очень мелкий песок замещают цемент по мере его уменьшения. При такой трансформации можно получать бетоны с низким удельным расходом цемента на единицу прочности.

Приведем несколько примеров реализации принципов создания таких бетонов нового поколения.

Результаты испытания бетонов приведены в таблице 1.

Использовались сырьевые составы, аналогичные составу №1 (табл. 1). Результаты испытаний представлены в таблице 2.

Как следует из результатов в бетоне с расходом цемента 150 кг/м 3 прочность составила 33,6 МПа, что соответствует марке М300, а в бетоне с расходом цемента 180 кг/м 3 – М400. Удельные расходы цемента на единицу прочности, соответственно, были равны 4,46 и 4,18 кг.

Из анализа приведенных в табл. 1 и 2 результатов, а также из результатов испытания 12 составов бетонов с марками по прочности на сжатие М700-М1200 была выявлена закономерность: с уменьшением содержания цемента доля молотого песка должна быть соизмерима с расходом портландцемента и их массовое соотношение должно приближаться к единице, а отношение очень мелкого песка фр. 0,16-0,63 мм к цементу – к 2,5-3,5.

Составы бетонов, прочностные показатели, рецептурные и реологические параметры

Источник

Основные принципы создания высокопрочных и особо высокопрочных бетонов

Значениетерминов «высокопрочный», «особо высокопрочный», «суперпрочный» бетон постоянноменялось. В практике строительства зданий и сооружений из железобетона в Россиимаксимальная прочность использованного высокопрочного бетона, по нашим данным,не превышала марки М1000.

Впрактике строительства из железобетона в США, Японии, Канады, Норвегии,Германии используются бетоны с прочностью 120–140 МПа. В лабораториях этихстран разработаны щебеночные и бесщебеночные тонкозернистыереакционно-порошковые бетоны из самоуплотняющихся смесей с прочностью 150–250МПа. Перспективы использования таких бетонов с чрезвычайно высокой прочностьюна растяжение и трещиностойкостью, которая обеспечиваются во всем объемеконструкций за счет использования тонкой и короткой арматуры (геометрическийфактор L/d = 30–60), будут постояннорасширяться. Хотя стоимость таких бетонов в 1,5–1,8 раза выше бетонов классовВ30–50, однако снижение объема бетона в конструкциях в 4–6 раз позволяетэкономить расход всех составляющих бетона в 2–3 раза.

Помимоэтого, во столько же раз снижаются транспортные расходы, значительно снижаетсямасса зданий и сооружений.

ВРоссии особо высокопрочные бетоны пока не востребованы. Нет условий для их полученияхотя есть высокопрочные горные породы, микрокремнезем и эффективныеотечественные и зарубежные супер- и гиперпластификаторы. Горнодобывающаяпромышленность не поставляет мытые высокопрочные заполнители фракции 3–10 или 3–12мм и обогащенные пески. Не освоено производство каменной муки с удельнойповерхностью 300–350 м2/кг. Бетоносмесительные цеха не имеютдостаточного количества расходных бункеров и не оборудованы высокоскоростнымисмесительными агрегатами.

Втеории отсутствует принципы подбора самоуплотняющихся бетонных смесей сраплывом конуса 55–60 см для получения особо высокопрочных фибробетонов. Неизучены необходимые реотехнологические свойства бетонных смесей.

Предложеннаяранее [2, 3] классификация реологических матриц для высокоподвижных и литых бетонныхсмесей, отличающихся различными масштабными уровнями и обеспечивающихминимальное предельное напряжение сдвига, позволяет сформулировать основныепринципы создания высокопрочных (ВПБ) и особо высокопрочных (ОВПБ) бетонов ссупер- и гиперпластификаторами, с каменной мукой и реакционноактивнымидобавками. Оптимальное соотношение компонентов в реологических матрицахбетонных смесей для бетонов общего назначения с каменной мукой с небольшими расходамипортландцемента также приводит к существенному повышению прочности [4].

Введение в бетонную смесь супер- игиперпластификаторов и реакционноактивных пуццолановых добавок микрокремнезема(МК) и микрометакаолина (ММК) — условие необходимое, но недостаточное длясоздания ВПБ и ОВПБ с прочностью 150–200 МПа. Используя суперразжижители вбетонах традиционных составов, обеспечивающих заполнение каркаса бетонамаксимальным количеством щебня, можно увеличить прочность бетона в «тощих»составах на 10–15 %, а в «жирных» — на 25–40 %. Добавляя МК или ММК, можносвязать до 20 % гидролизной извести из алита и белита и повысить прочностьбетона на 20–50 %. В итоге общее увеличение прочности может быть полуторо-двукратным.Используя для бетона М500 экономичный состав с соотношением компонентов Ц:П:Щ =1:1,5:2 при расходе цемента 500 кг с маркой его М550, можно при В/Ц=0,38 получить маркубетона 500. При введении суперпластификатора и снижении расхода воды до 20–25 %можно повысить прочность до 65–75 МПа. При введении МК в количестве 15–20% отмассы портландцемента можно из самоуплотняющихся бетонных смесей достигнутьпрочности бетона 80–100 МПа. Такое значение прочности является предельным длятрадиционных составов бетона. При этом концентрация твердой фазы, вычисляемаякак отношение суммы объемов цемента, песка и щебня к 1 м3 бетона, будеточень высокой и составит 85–89 % при водотвердом отношении бетонной смеси 0,072–0,090.

В статье[5] приводятся результаты испытания высокопрочного бетона, изготовленного сиспользованием ВНВ-100 активностью 92 МПа, мытого гранитного щебня, крупного пескаи МК. Бетон имел к 28 сут. нормального твердения прочность при сжатии всего 86МПа. Это является доказательством того, что дальнейшее повышение прочностиневозможно без кардинального изменения состава и топологической структурыбетона. Новая рецептура и структура высокопрочных бетонов должна увеличить объемреологической водно-дисперсной матрицы (Vдп) первого рода, состоящей из цемента,добавки МК и воды. Эта более объемная матрица должна обеспечить свободноеперемещение частиц песка в водно-дисперсной системе.

Повышениекоэффициента раздвижки зерен песка можно осуществить за счет добавления воды.Но это приводит к расслаиванию бетонной смеси и снижению прочности бетона.

Вбетонах нового поколения объем реологической матрицы необходимо увеличиватьдобавлением к цементу не только МК, но и дисперсных частиц каменной муки микрометрическогомасштабного уровня. При этом замена цемента каменной мукой, как правило, не всостоянии значительно увеличить объем дисперсной реологической матрицы, если истиннаяплотность горной породы незначительно уступает плотности портландцемента. Объемдисперсной матрицы может быть еще меньше, если замещающая некоторую долюцемента каменная мука, будучи более реологически активной в суспензии ссуперпластификатором, чем цементная суспензия, снизит количество воды. В этомслучае мука, обеспечивая более высокую гравитационную растекаемость приминимуме содержания воды, чем цементная суспензия, еще более понизит содержаниеводно-дисперсной системы за счет сокращения объема воды. При значительномдобавлении к цементу мука позволит существенно увеличить объем водно-дисперснойматрицы с высоким водоредуцирующим индексом (ВИ). ВИ большинствапортландцементов в суспензиях составляет 1,6–2,0 и редко выше. Некоторые видыкарбонатных и силицитовых каменных пород имеют ВИ = 2–4, а отдельные оксиды — до4–6. Смеси цемента с некоторыми видами каменной муки обладают синергетическим действием(соразжижением), и их суспензии обеспечивают реологический индекс 2–3, то есть двух-трехкратноеуменьшение количества воды при сохранении текучести с предельным напряжениемсдвига 5–10 Па.

Второйважный для обеспечения «высокой» реологии бетонных смесей для высокопрочных бетоновфактор — увеличение подвижности за счет увеличения объема цементно-водно-песчанойреологической матрицы каменная мука для бетона это. Смотреть фото каменная мука для бетона это. Смотреть картинку каменная мука для бетона это. Картинка про каменная мука для бетона это. Фото каменная мука для бетона этовторого уровня. Онадолжна обеспечить свободное перемещение зерен щебня в цементно-песчаной(растворной) смеси, то есть необходима существенная раздвижка зерен щебня.

Прирасчете состава бетона по методу абсолютных объемов достижение рациональнойреологии обеспечивается увеличением прослойки цементного теста между частицамипеска и прослойки цементно-песчаного раствора между зернами щебня. В формулахрасчета состава бетона это учитывается коэффициентом раздвижки зерен щебня каменная мука для бетона это. Смотреть фото каменная мука для бетона это. Смотреть картинку каменная мука для бетона это. Картинка про каменная мука для бетона это. Фото каменная мука для бетона это,который варьирует от 1,1 до 1,5. Сделать коэффициент раздвижки выше 1,5 можноза счет увеличения доли песка или объема цементного теста. В первом случаебетон становится «запесоченным», с пониженной прочностью. Во втором — бетонстановится более дорогим из-за значительного снижения доли щебня, увеличениясодержания цемента.

Длявысокопрочных бетонов повышение количества цемента на 10–20 % свыше 500 кг/м3является неизбежным. Соответственно, необходимо увеличить долю каменной муки, атакже МК или ММК, чтобы уменьшить содержание щебня и песка.

Такимобразом, топологическая структура высокопрочных и особо высокопрочных бетоновпринципиально должна отличаться от структуры бетонов общего назначения марок300–600, имеющих компактную упаковку зерен песка в цементом тесте и зерен щебняв цементно-песчаном растворе. В этой структуре принцип непрерывнойгранулометрии щебня, «незыблемый» для традиционных бетонов, не является обязательным.Иными словами, бетон должен быть с «плавающей» структурой песка и щебня, тоесть малопесчаным и малощебеночным.

Введем в качестве критериальных параметров такойструктуры критерий избытка каменная мука для бетона это. Смотреть фото каменная мука для бетона это. Смотреть картинку каменная мука для бетона это. Картинка про каменная мука для бетона это. Фото каменная мука для бетона этоабсолютного объемовреологической дисперсной матрицы каменная мука для бетона это. Смотреть фото каменная мука для бетона это. Смотреть картинку каменная мука для бетона это. Картинка про каменная мука для бетона это. Фото каменная мука для бетона этонад абсолютным объемомпеска и критерий избытка каменная мука для бетона это. Смотреть фото каменная мука для бетона это. Смотреть картинку каменная мука для бетона это. Картинка про каменная мука для бетона это. Фото каменная мука для бетона этообъема реологической цементно-дисперсно-песчанойматрицы каменная мука для бетона это. Смотреть фото каменная мука для бетона это. Смотреть картинку каменная мука для бетона это. Картинка про каменная мука для бетона это. Фото каменная мука для бетона этонад объемом щебня:

каменная мука для бетона это. Смотреть фото каменная мука для бетона это. Смотреть картинку каменная мука для бетона это. Картинка про каменная мука для бетона это. Фото каменная мука для бетона это, (1)

каменная мука для бетона это. Смотреть фото каменная мука для бетона это. Смотреть картинку каменная мука для бетона это. Картинка про каменная мука для бетона это. Фото каменная мука для бетона это, (2)

гдекаменная мука для бетона это. Смотреть фото каменная мука для бетона это. Смотреть картинку каменная мука для бетона это. Картинка про каменная мука для бетона это. Фото каменная мука для бетона это— абсолютные объемы цемента,каменной муки, МК, песка, щебня и воды соответственно.

Объемыкомпонентов на 1 м3в рецептуре обычных и высокопрочных бетонов представлены на рис. 1.

каменная мука для бетона это. Смотреть фото каменная мука для бетона это. Смотреть картинку каменная мука для бетона это. Картинка про каменная мука для бетона это. Фото каменная мука для бетона это

Рис. 1. Объемы компонентов на 1 м3 в рецептуреобычного (а) и высокопрочного (б) бетонов

Проведеннымиисследованиями установлено, что если в обычных бетонах каменная мука для бетона это. Смотреть фото каменная мука для бетона это. Смотреть картинку каменная мука для бетона это. Картинка про каменная мука для бетона это. Фото каменная мука для бетона этоварьируется от 1,2 до1,6, каменная мука для бетона это. Смотреть фото каменная мука для бетона это. Смотреть картинку каменная мука для бетона это. Картинка про каменная мука для бетона это. Фото каменная мука для бетона это— от 1,15 до 1,5, тодля ВПБ и ОВПБ каменная мука для бетона это. Смотреть фото каменная мука для бетона это. Смотреть картинку каменная мука для бетона это. Картинка про каменная мука для бетона это. Фото каменная мука для бетона этоизменяется от 3,0 до3,5, а каменная мука для бетона это. Смотреть фото каменная мука для бетона это. Смотреть картинку каменная мука для бетона это. Картинка про каменная мука для бетона это. Фото каменная мука для бетона это— от 2,2 до 2,5. Вотдельных высокопрочных бетонах значения этих критериев могут быть еще больше: каменная мука для бетона это. Смотреть фото каменная мука для бетона это. Смотреть картинку каменная мука для бетона это. Картинка про каменная мука для бетона это. Фото каменная мука для бетона это=3,5–3,9, каменная мука для бетона это. Смотреть фото каменная мука для бетона это. Смотреть картинку каменная мука для бетона это. Картинка про каменная мука для бетона это. Фото каменная мука для бетона это=3,0–3,5.

В табл.1 представлены расчеты критериев каменная мука для бетона это. Смотреть фото каменная мука для бетона это. Смотреть картинку каменная мука для бетона это. Картинка про каменная мука для бетона это. Фото каменная мука для бетона этои каменная мука для бетона это. Смотреть фото каменная мука для бетона это. Смотреть картинку каменная мука для бетона это. Картинка про каменная мука для бетона это. Фото каменная мука для бетона этодля ВПБ, ОВПБ ибетонов общего назначения. Составы дисперсно-армированных ВПБ (составы 1–3),изготовленных из бетонной смеси с использованием кварцевой муки и МК с осадкойбольшого конуса (немецкий стандарт) 55–60 мм и прочностные показатели бетоноввзяты из статьи [6]. Состав бетона повышенной прочности (состав 4),изготовленного из бетонной смеси на ВНВ-100 (содержание СП не указывается) с 10% МК от массы цемента, взяты из статьи [5].

Расход материалов на 1 м3, кг/л

каменная мука для бетона это. Смотреть фото каменная мука для бетона это. Смотреть картинку каменная мука для бетона это. Картинка про каменная мука для бетона это. Фото каменная мука для бетона этобетонной смеси, кг/м3 (без

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *