как вы можете объяснить то что реальное расщепление по фенотипу

Как вы можете объяснить то что реальное расщепление по фенотипу

Подробное решение параграф § 10 по биологии для учащихся 11 класса, авторов И.Н. Пономарева, О.К. Корнилова, Т.Е. Лощилина, П.В. Ижевский Базовый уровень 2012

Вопрос 1. Почему явление независимого наследования признаков выявляется лишь у гибридов второго поколения (F2)?

Потому что у гибридов первого поколения нет расщепления по генотипу и фенотипу (проявляются лишь доминантные признаки, одна фенотипическая группа). А у гибридов второго поколения каждая пара признаков наследуется независимо друг от других и дает расщепление 3:1, образуя при этом четыре фенотипические группы в соотношении 9:3:3:1 (гетерозиготы по двум парам аллельных генов образуют четыре типа гамет в равных количествах (АВ, Аb, аВ, аb). В двух из них гены находятся в таком же сочетании, как у исходных родителей, а в двух других — в новых сочетаниях — рекомбинациях).

Вопрос 2. Каковы условия соблюдения третьего закона Менделя?

Нужны следующие условия: альтернативное проявление признаков в каждой паре; гомозиготность исходных форм (родительских особей); равная вероятность образования у гибрида гамет с разными аллелями; одинаковая жизнеспособность разных гамет; достаточная для получения достоверных результатов численность особей во втором поколении; случайный характер сочетания гамет при оплодотворении; одинаковая жизнеспособность зигот с разными комбинациями генов; независимость проявления признаков от внешних условий и от остальных генов генотипа в целом.

Вопрос 3. Почему в анализирующем скрещивании для выявления генотипа не используются особи, гомозиготные по доминантным аллелям?

Потому что при таком скрещивании мы не пронаблюдали бы проявление рецессивных признаков и расщепление по генотипу, а проявлялись бы только доминантные признаки, что ничего не проясняет.

Источник

Как вы можете объяснить то что реальное расщепление по фенотипу

Подробное решение параграф § 26 по биологии для учащихся 10 класса, авторов Сивоглазов В.И., Агафонова И.Б., Захарова Е.Т. 2014

Какое скрещивание называют моногибридным?

Мендель начал работу с постановки эксперимента по наиболее простому, моногибридному скрещиванию, в котором родительские особи отличались друг от друга по одному изучаемому признаку.

Что такое гомозиготный организм; гетерозиготный организм?

Организмы, не дающие расщепления в следующем поколении, были названы гомозиготными (от греч. gomo — равный, zygota — оплодотворённая яйцеклетка), а организмы, в потомстве которых обнаруживается расщепление, назвали гетерозиготными (от греч. getero — разный). Гомозиготные организмы имеют одинаковые аллели одного гена — оба доминантных (АА) или оба рецессивных (аа).

Что расходится к разным полюсам в анафазе первого мейотического деления?

В анафазе I гомологичные хромосомы из бивалента (тетрады) расходятся к полюсам. Следовательно, в каждую из двух образующихся клеток попадает только одна из каждой пары гомологичных хромосом — число хромосом уменьшается в два раза, хромосомный набор становится гаплоидным. Однако каждая хромосома при этом всё ещё состоит из двух сестринских хроматид.

Вопросы для повторения и задания

1. Какое скрещивание называют дигибридным?

Скрещивание, при котором прослеживают наследование двух пар альтернативных признаков, называют дигибридным, трёх пар — тригибридным и т. д. В общем случае скрещивание особей, отличающихся по многим признакам, называют полигибридным.

2. Сформулируйте закон независимого наследования. Для каких аллельных пар справедлив этот закон?

Закон независимого наследования (третий закон Менделя): при скрещивании двух гомозиготных особей, отличающихся друг от друга по двум и более парам альтернативных признаков, гены и соответствующие им признаки передаются потомству независимо друг от друга и комбинируются во всех возможных сочетаниях.

3. Что такое анализирующее скрещивание?

Анализирующее скрещивание — это такой тип скрещивания, при котором исследуемую особь с доминантным фенотипом скрещивают с организмом, гомозиготным по рецессивному аллелю (анализатором). Если испытуемая особь гомозиготна (АА), то потомство от

такого скрещивания будет единообразно и расщепления не произойдёт. Совершенно иной результат получится при скрещивании в том случае, если исследуемый организм гетерозиготен (Аа). В потомстве произойдёт расщепление, и образуется два фенотипических класса, причём их соотношение будет строго 1 : 1. Полученный результат чётко доказывает формирование у одной из родительских особей двух типов гамет, т. е. её гетерозиготность.

4. При каких условиях в дигибридном скрещивании наблюдается независимое распределение признаков в потомстве?

Независимое распределение признаков в потомстве при дигибридном скрещивании возможно лишь в том случае, когда гены, определяющие развитие данных признаков, расположены в разных негомологичных хромосомах.

5. Подумайте, какое соотношение фенотипических классов следует ожидать в дигибридном анализирующем скрещивании, если признаки наследуются независимо.

В потомстве произойдёт расщепление, и образуется два фенотипических класса, причём их соотношение будет строго 1 : 1. Полученный результат чётко доказывает формирование у одной из родительских особей двух типов гамет, т. е. её гетерозиготность.

Подумайте! Вспомните!

1. Составьте и решите задачу на дигибридное скрещивание.

Учены провели скрещивание гороха по двум признакам – по форме семян гороха (гладкую и морщинистую) и окраске семян (желтую и зеленую). При получении гибридов F1 и F2 они пришели к выводу о независисмом наследовании признаков. Составить схему скрещивания, если изначально родительские особи являлись гомозиготами по двум признакам.

Р – родители ♂- мужская особь, ♀- женская особь

G – гаметы (половые клетки, обводятся в круг для обозначения клетки)

F1 – первое поколение гибридов (потомков)

А – доминантный желтый признак

а – рецессивный зеленый признак

В – доминантная гладкая форма гороха

b – рецессивная морщинистая форма гороха

как вы можете объяснить то что реальное расщепление по фенотипу. Смотреть фото как вы можете объяснить то что реальное расщепление по фенотипу. Смотреть картинку как вы можете объяснить то что реальное расщепление по фенотипу. Картинка про как вы можете объяснить то что реальное расщепление по фенотипу. Фото как вы можете объяснить то что реальное расщепление по фенотипу

Ответ: III закон – закон независимого наследования признаков, то есть появились признаки изначально не свойственные для родительских форм даже в F1 (зеленые и гладкие горошины). При этом произошло расщепление признаков по генотипу на 16 классов, а вот по фенотипу – на четыре класса в соотношении 9:3:3:1 (9 желтые и гладкие: 3 желтые и морщинистые: 3 зеленые и гладкие: 1зеленые и морщинистые).

2. Как вы можете объяснить то, что реальное расщепление по фенотипу тем ближе к теоретически ожидаемому, чем большее число потомков получено при скрещивании?

Если потомков много, это означает, что в оплодотворении участвовало много гамет, а это означает, что максимальное сочетание признаков может проявиться у гибридов.

как вы можете объяснить то что реальное расщепление по фенотипу. Смотреть фото как вы можете объяснить то что реальное расщепление по фенотипу. Смотреть картинку как вы можете объяснить то что реальное расщепление по фенотипу. Картинка про как вы можете объяснить то что реальное расщепление по фенотипу. Фото как вы можете объяснить то что реальное расщепление по фенотипу

Расщепление по генотипу:

Расщепление по фенотипу:

7 классов – оба доминантных признака

2 класса – одни доминантный и один рецессивный признаки

При классическом менделевском расщеплении дигибридного скрещивания соотношение по фенотипу идет: 9:3:3:1.

Источник

26. Закономерности наследования. Дигибридное скрещивание

26. Закономерности наследования. Дигибридное скрещивание

Вспомните!

Какое скрещивание называют моногибридным?

Что такое гомозиготный организм; гетерозиготный организм?

Что расходится к разным полюсам в анафазе первого мейотического деления?

Закон независимого наследования. Изучение наследования отдельных признаков (цвет семени, форма семени, цвет венчика и др.) позволило Г. Менделю установить ряд важных закономерностей. Но в природе организмы редко отличаются друг от друга только по одному признаку, поэтому Мендель решил исследовать, как ведут себя в ряду поколений несколько признаков одновременно.

Скрещивание, при котором прослеживают наследование двух пар альтернативных признаков, называют дигибридным, трёх пар – тригибридным и т. д. В общем случае скрещивание особей, отличающихся по многим признакам, называют полигибридным.

Для постановки эксперимента по дигибридному скрещиванию Мендель взял два сорта гороха, один из которых имел жёлтые и гладкие семена, а другой – зелёные и морщинистые. В первом поколении все гибридные семена были жёлтыми и гладкими, т. е. закономерность единообразия сохранилась и в этом типе скрещивания. Следовательно, жёлтая окраска (А) и гладкая форма (В) – доминантные признаки, а зелёная окраска (а) и морщинистая форма (b) – рецессивные. При самоопылении гибридных растений во втором поколении произошло расщепление и образовалось четыре фенотипических класса: 315 жёлтых гладких семян, 101 жёлтое морщинистое, 108 зелёных гладких и 32 зелёных морщинистых. Для того чтобы было легче понять, что происходит при дигибридном скрещивании, воспользуемся таблицей (рис. 78). Впервые такой способ определения соотношения фенотипических классов в сложных скрещиваниях предложил английский генетик Реджиналд Пеннет, поэтому такую таблицу называют решёткой Пеннета.

Исходные родительские растения были гомозиготны по обоим генам и могли образовать гаметы только одного типа: выросшие из жёлтых гладких горошин (ААВВ) – только АВ, а выросшие из зелёных морщинистых (ааbb) – аb. Следовательно, всё первое поколение было единообразно и по генотипу (АаВb), и по фенотипу (жёлтые гладкие горошины), что соответствует данным, полученным Менделем. Если гены, отвечающие за формирование исследуемых признаков, расположены в разных хромосомах, то при образовании гамет у гибридов первого поколения они будут комбинироваться независимо друг от друга.

Вспомните, что в первом делении мейоза при образовании половых клеток гомологичные хромосомы каждой пары расходятся к разным полюсам клетки независимо от других пар гомологичных хромосом.

Допустим, хромосома с геном А отошла к одному полюсу, к тому же полюсу с равной вероятностью может отойти и хромосома с геном В, и хромосома с геном b. Следовательно, ген А может оказаться в одной гамете и с геном В, и с геном b. Оба события равновероятны. Поэтому у гибридов первого поколения (АаВb) образуется четыре типа гамет в равных количествах: АВ, Аb, аB, ab.

как вы можете объяснить то что реальное расщепление по фенотипу. Смотреть фото как вы можете объяснить то что реальное расщепление по фенотипу. Смотреть картинку как вы можете объяснить то что реальное расщепление по фенотипу. Картинка про как вы можете объяснить то что реальное расщепление по фенотипу. Фото как вы можете объяснить то что реальное расщепление по фенотипу

Рис. 78. Наследование признаков при дигибридном скрещивании

В дальнейшем при оплодотворении любая гамета женского организма имеет равные шансы быть оплодотворённой любой мужской гаметой. Генотипы и фенотипы второго поколения представлены в таблице. Всего во втором поколении (в F 2) образуется 9 разных генотипов, которые проявляются в виде четырёх фенотипических групп (жёлтые гладкие, жёлтые морщинистые, зелёные гладкие и зелёные морщинистые), причём соотношение этих фенотипов соответствует отношению 9:3:3:1. Количество фенотипических классов меньше, чем число генотипов, потому что обладатели разных генотипов могут иметь одно и то же внешнее фенотипическое проявление признаков. Так, жёлтые гладкие семена представлены четырьмя разными генотипами (AABB, AaBB, AABb, AaBb), жёлтые морщинистые – двумя генотипами (AAbb, Aabb), зелёные гладкие – тоже двумя (aaBB, aaBb), а зелёные морщинистые – только одним (aabb). Если мы подсчитаем расщепление в F 2 по каждой паре признаков отдельно, то легко убедимся, что в обоих случаях (жёлтые – зелёные и гладкие – морщинистые) оно равно 12:4, т. е. 3:1, как и при моногибридном скрещивании. Следовательно, каждая пара альтернативных признаков наследуется независимо. Значит, дигибридное скрещивание представляет собой два независимо идущих моногибридных скрещивания, результаты которых как бы накладываются друг на друга.

Следует подчеркнуть, что такое независимое распределение признаков в потомстве при дигибридном скрещивании возможно лишь в том случае, когда гены, определяющие развитие данных признаков, расположены в разных негомологичных хромосомах.

Полученные результаты дигибридных скрещиваний позволили Менделю сформулировать закон независимого наследования (третий закон Менделя): при скрещивании двух гомозиготных особей, отличающихся друг от друга по двум и более парам альтернативных признаков, гены и соответствующие им признаки передаются потомству независимо друг от друга и комбинируются во всех возможных сочетаниях.

Анализирующее скрещивание. Мы с вами уже не раз убеждались, что особи, имеющие одинаковые проявления признаков (одинаковый фенотип), могут обладать разными генотипами. При полном доминировании одного аллеля над другим гетерозиготные особи (Аа) внешне неотличимы от гомозиготных по доминантному аллелю (АА). Часто возникает необходимость определить генотип конкретной особи, имеющей доминантный фенотип. Для этого проводят так называемое анализирующее скрещивание (рис. 79).

Анализирующее скрещивание – это такой тип скрещивания, при котором исследуемую особь с доминантным фенотипом скрещивают с организмом, гомозиготным по рецессивному аллелю (анализатором). Если испытуемая особь гомозиготна (АА), то потомство от такого скрещивания будет единообразно и расщепления не произойдёт. Совершенно иной результат получится при скрещивании в том случае, если исследуемый организм гетерозиготен (Аа). В потомстве произойдёт расщепление, и образуется два фенотипических класса, причём их соотношение будет строго 1:1. Полученный результат чётко доказывает формирование у одной из родительских особей двух типов гамет, т. е. её гетерозиготность.

как вы можете объяснить то что реальное расщепление по фенотипу. Смотреть фото как вы можете объяснить то что реальное расщепление по фенотипу. Смотреть картинку как вы можете объяснить то что реальное расщепление по фенотипу. Картинка про как вы можете объяснить то что реальное расщепление по фенотипу. Фото как вы можете объяснить то что реальное расщепление по фенотипу

Рис. 79. Анализирующее скрещивание по одной паре признаков

Вопросы для повторения и задания

1. Какое скрещивание называют дигибридным?

2. Сформулируйте закон независимого наследования. Для каких аллельных пар справедлив этот закон?

3. Что такое анализирующее скрещивание?

4. При каких условиях в дигибридном скрещивании наблюдается независимое распределение признаков в потомстве?

5. Подумайте, какое соотношение фенотипических классов следует ожидать в дигибридном анализирующем скрещивании, если признаки наследуются независимо.

Подумайте! Выполните!

1. Составьте и решите задачу на дигибридное скрещивание.

2. Как вы можете объяснить то, что реальное расщепление по фенотипу тем ближе к теоретически ожидаемому, чем большее число потомков получено при скрещивании?

Работа с компьютером

Обратитесь к электронному приложению. Изучите материал и выполните задания.

Условия выполнения законов Г. Менделя. Законы Менделя выполняются в том виде, как они рассмотрены выше, далеко не всегда. Для того чтобы расщепления соответствовали теоретически ожидаемым, необходимо выполнение определённых условий:

• образование гамет всех возможных типов в равных соотношениях, т. е. с равной вероятностью;

• одинаковая жизнеспособность всех типов гамет;

• равная вероятность участия гамет всех типов в процессе оплодотворения и одинаковая вероятность образования всех типов зигот;

• одинаковая жизнеспособность всех типов зигот;

• степень выраженности признака должна быть одинакова у всех особей с одинаковым генотипом.

Нарушение одного или нескольких из этих условий приводит к отклонению от обычного расщепления. Наиболее ярко это проявляется в случае моногибридного скрещивания. Иногда во втором поколении вместо ожидаемого расщепления по фенотипу 3:1 наблюдается необычное соотношение классов – 2:1. Это происходит в результате гибели зигот с генотипом АА. Вследствие их отсутствия и происходит нарушение расщепления.

Например, у мышей известен ген, определяющий окраску шерсти. При скрещивании между собой чёрных мышей всегда получается чёрное потомство. При скрещивании между собой жёлтых мышей всегда происходит расщепление: 1 / 3 потомства – чёрные, 2 / 3 – жёлтые. При скрещивании чёрных и жёлтых мышей рождаются чёрные и жёлтые мыши в равном соотношении.

Из данных результатов следует, что жёлтые мыши гетерозиготны (Аа), а чёрные гомозиготны по рецессивному аллелю (аа). Особи генотипа АА, которые должны появляться при скрещивании гетерозигот, нежизнеспособны и погибают на ранних стадиях развития, что подтверждает эмбриологический анализ. Получается, что аллель А влияет не только на цвет шерсти, но и на жизнеспособность. В отношении первого признака он доминантен, так как проявляется у гетерозигот, а в отношении второго – рецессивен, так как гибель эмбрионов происходит только при наличии у них в генотипе двух аллелей (АА). Именно поэтому такие аллели называют доминантными аллелями с рецессивным летальным действием. Этот пример иллюстрирует, что нарушение даже одного из условий, в данном случае – неодинаковая жизнеспособность всех типов зигот, приводит к отклонениям от теоретически ожидаемых расщеплений.

Взаимодействие аллельных генов. Мы рассмотрели законы Менделя на примерах, в которых доминантный аллель полностью подавлял проявление рецессивного аллеля. Однако так бывает не всегда. Рассмотрим основные типы взаимодействия аллельных генов (рис. 80).

Полное доминирование. Полное доминирование – участие только одного аллеля в определении признака у гетерозиготной особи. Полное доминирование проявляется в случае полного подавления действия рецессивного аллеля доминантным. В этом случае у всех гетерозиготных особей – гибридов первого поколения – фенотип совпадает с фенотипом одной из родительских особей. При полном доминировании фенотипы гетерозиготного организма (Аа) и гомозиготного по доминантному аллелю (АА) одинаковы.

как вы можете объяснить то что реальное расщепление по фенотипу. Смотреть фото как вы можете объяснить то что реальное расщепление по фенотипу. Смотреть картинку как вы можете объяснить то что реальное расщепление по фенотипу. Картинка про как вы можете объяснить то что реальное расщепление по фенотипу. Фото как вы можете объяснить то что реальное расщепление по фенотипу

Рис. 80. Взаимодействие аллельных генов

Неполное доминирование. При неполном доминировании доминантный аллель не полностью подавляет рецессивный, поэтому у гибридов первого поколения – у гетерозиготных организмов (Аа) – наблюдается промежуточное состояние признака, так называемый промежуточный фенотип. Впервые подобное явление описал Г. Мендель. В одном из скрещиваний, которые он проводил, доминантный признак не полностью исключал проявление рецессивного признака. При скрещивании крупнолистного сорта гороха с мелколистным в первом поколении все листья имели среднюю величину. В дальнейшем выяснилось, что подобное неполное доминирование одного аллеля над другим и, как следствие, формирование промежуточного фенотипа у гибридов первого поколения встречается у разных организмов. Например, у человека неполное доминирование проявляется при наследовании структуры волос. Аллель, определяющий формирование курчавых волос, не полностью доминирует над аллелем прямых волос. В результате у гетерозигот наблюдается промежуточное проявление признака – волнистые волосы. При неполном доминировании во втором поколении расщепление по генотипу и фенотипу совпадают (1АА:2Аа:1аа).

Кодоминирование. Кодоминирование – проявление у гетерозигот обоих аллелей одного гена. Примером кодоминирования является наследование IV группы крови у человека.

Группы крови по системе АВ0 детерминируются аутосомным геном I. Существует три основных аллеля этого гена, два из которых доминантные (I A и I B ), а один рецессивный (I 0 ). Каждый доминантный аллель контролирует синтез соответствующего антигена в эритроцитах – агглютиногена А (I A ) или В (I B ). Группа крови определяется наличием или отсутствием того или иного агглютиногена. У людей с генотипами I A I A или I A I 0 эритроциты имеют только поверхностный агглютиноген А (группа крови А, или II). У людей с генотипами I B I B или I B I 0 эритроциты имеют только поверхностный агглютиноген B (группа крови B, или III). При генотипе I 0 I 0 эритроциты лишены обоих антигенов (группа крови 0, или I).

У гетерозигот с генотипом I A I B имеет место кодоминирование – эритроциты несут оба антигена – А и В (группа крови АВ, или IV).

Наследование групп крови АВ0 иллюстрирует ещё одно генетическое явление – множественный аллелизм. Далеко не всегда ген может находиться только в двух альтернативных состояниях. Довольно часто в результате мутаций возникают не два, а три и более состояний какого – либо гена. Такое явление называют множественным аллелизмом. Так, в человеческой популяции присутствуют три аллеля аутосомного гена I, определяющего группу крови. Однако у каждого человека, как у диплоидного организма, в генотипе будет только два аллеля.

Сверхдоминирование. При сверхдоминировании наблюдается более сильное проявление признака у гетерозигот (Аa), чем у гомозигот по доминантному аллелю (АА). В качестве примера можно привести эффект сверхдоминирования, наблюдаемый у плодовой мушки-дрозофилы по такому признаку, как плодовитость. Экспериментально показано, что у гетерозигот по отдельным мутациям наблюдаются гораздо более высокие показатели плодовитости, чем у родительских линий. Такая повышенная мощность гибридов первого поколения носит название гетерозис.

Данный текст является ознакомительным фрагментом.

Продолжение на ЛитРес

Читайте также

Доминантный тип наследования

Доминантный тип наследования Если мутантный ген является доминантным, наличие такого гена обязательно будет проявляться у человека, который является его носителем. Чаще всего такие люди бывают гетерозиготами по данному гену, то есть один аллельный ген у них является

Рецессивный тип наследования

Рецессивный тип наследования Болезни с рецессивным типом наследования проявляются только у людей — рецессивных гомозигот по данным генам. Это означает, что в случае, когда клетки человека обладают только одним мутантным аллельным геном, а второй ген работает нормально,

Глава 4. Закономерности наследственности

Глава 4. Закономерности наследственности Ключевой проблемой биологии, по-видимому, можно считать вопрос о том, как увековечивает свой опыт живая материя. М. Дельбрюк (1906–1981), американский генетик, лауреат Нобелевской премии 1969 г. Общебиологическое значение генетики

5.5. Модификации и проблема наследования приобретенных признаков

5.5. Модификации и проблема наследования приобретенных признаков Модификации – это варианты фенотипа в пределах нормы реакции генотипа. Они обеспечивают приспособляемость организма в течение его жизни к факторам внешней среды и представляют собой изменения,

ПРОТОКОЛ ГИНЕКОЛОГИЧЕСКОГО НАСЛЕДОВАНИЯ СУКИ

Глава 11. Экологические закономерности в природе

Глава 11. Экологические закономерности в природе Экология – это наука, изучающая организацию и функционирование надорганизменных систем. В настоящее время ей уделяется самое пристальное внимание, в связи с чем экология включена в учебные планы многих направлений и

МЕЖПОРОДНОЕ СКРЕЩИВАНИЕ

МЕЖПОРОДНОЕ СКРЕЩИВАНИЕ Скрещиванием называют спаривание животных разных пород для получения высококачественных пользовательных, животных, быстрого изменения свойств породы и выведения новых пород.Животные, получаемые от спаривания разных пород или происходящие от

Материальная культура и биологические закономерности

Материальная культура и биологические закономерности Знаменательно, что наряду с мощным прогрессом в развитии материальной культуры, а соответственно и психической деятельности, с начала эпохи позднего палеолита резко затормозилось биологическое развитие человека:

Глава 6. Законы наследования

Глава 6. Законы наследования Мендель и его горохК сожалению, наследование цвета глаз в действительности не столь уж элементарно, как это было описано в предыдущей главе. Если бы оно было таким простым, люди, возможно, заметили бы способ, с помощью которого цвет глаз

Тема 4. Закономерности наследственности

Тема 4. Закономерности наследственности Не беда появиться на свет в утином гнезде, если ты вылупился из лебединого яйца. Г. Х. Андерсен (1805–1875), датский писатель Общебиологическое значение генетики вытекает из того, что законы наследственности справедливы для всех

25. Закономерности наследования. Моногибридное скрещивание

25. Закономерности наследования. Моногибридное скрещивание Вспомните!Что такое ген?Какой набор хромосом содержат половые клетки?Закон единообразия гибридов первого поколения. Мендель начал работу с постановки эксперимента по наиболее простому, моногибридному

О взаимоотношении наследования активно- и пассивно-оборонительных реакций

Закономерности и «сюрпризы» доместикации

Закономерности и «сюрпризы» доместикации Домашние животные отличаются от диких прародителей рядом особенностей. Из внешних проявлений можно назвать, например, окраску. У диких она, как правило, единообразна для всех представителей вида, отклонения от природной нормы

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *