ΠΊΠ°ΠΊ Π΄ΠΎΠΊΠ°Π·Π°ΡΡ ΡΡΠΎ ΡΠ³ΠΎΠ» ΠΏΡΡΠΌΠΎΠΉ
ΠΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΡΠΉ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊ: ΠΡΠΈΠ·Π½Π°ΠΊΠΈ Π Π°Π²Π΅Π½ΡΡΠ²Π° ΠΈ ΠΠΎΠ΄ΠΎΠ±ΠΈΡ
ΠΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅
ΠΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΡΠΉ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊ β ΡΡΠΎ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊ, Π² ΠΊΠΎΡΠΎΡΠΎΠΌ ΠΎΠ΄ΠΈΠ½ ΠΈΠ· ΡΠ³Π»ΠΎΠ² ΠΏΡΡΠΌΠΎΠΉ.
ΠΠΈΠΏΠΎΡΠ΅Π½ΡΠ·Π° Π² ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΎΠΌ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ΅ β ΡΡΠΎ ΡΡΠΎΡΠΎΠ½Π° Π½Π°ΠΏΡΠΎΡΠΈΠ² ΠΏΡΡΠΌΠΎΠ³ΠΎ ΡΠ³Π»Π°.
ΠΠ°ΡΠ΅Ρ Π² ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΎΠΌ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ΅ β ΡΡΠΎ Π΄Π²Π΅ ΡΡΠΎΡΠΎΠ½Ρ ΠΏΡΠΈΠ»Π΅ΠΆΠ°ΡΠΈΠ΅ ΠΊ ΠΏΡΡΠΌΠΎΠΌΡ ΡΠ³Π»Ρ.
Π‘Π²ΠΎΠΉΡΡΠ²Π° ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ°
Π ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΎΠΌ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ΅:
Π€ΠΎΡΠΌΡΠ»Ρ:
ΠΡΠΈΠ·Π½Π°ΠΊΠΈ ΡΠ°Π²Π΅Π½ΡΡΠ²Π° ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΡΡ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠΎΠ²
Π‘ ΠΏΠΎΠΌΠΎΡΡΡ ΠΏΡΠΈΠ·Π½Π°ΠΊΠΎΠ² ΡΠ°Π²Π΅Π½ΡΡΠ²Π° ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΡΡ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠΎΠ²
ΠΌΠΎΠΆΠ½ΠΎ Π΄ΠΎΠΊΠ°Π·Π°ΡΡ ΡΡΠΎ ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΡΠ΅ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠΈ ΡΠ°Π²Π½Ρ.
ΠΡΠΈΠ·Π½Π°ΠΊΠΈ ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ°
Π‘ ΠΏΠΎΠΌΠΎΡΡΡ ΠΏΡΠΈΠ·Π½Π°ΠΊΠΎΠ² ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ° ΠΌΠΎΠΆΠ½ΠΎ
Π΄ΠΎΠΊΠ°Π·Π°ΡΡ, ΡΡΠΎ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊ ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΡΠΉ.
ΠΡΠΈΠ·Π½Π°ΠΊΠΈ ΠΏΠΎΠ΄ΠΎΠ±ΠΈΡ ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΡΡ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠΎΠ²
Π‘ ΠΏΠΎΠΌΠΎΡΡΡ ΠΏΡΠΈΠ·Π½Π°ΠΊΠΎΠ² ΠΏΠΎΠ΄ΠΎΠ±ΠΈΡ ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΡΡ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠΎΠ² ΠΌΠΎΠΆΠ½ΠΎ
Π΄ΠΎΠΊΠ°Π·Π°ΡΡ, ΡΡΠΎ ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΡΠ΅ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠΈ ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ.
Π’Π΅ΠΎΡΠ΅ΠΌΠ° ΠΊΠΎΡΠΈΠ½ΡΡΠΎΠ² ΠΈ ΡΠΈΠ½ΡΡΠΎΠ²
Π€ΠΎΡΠΌΡΠ»ΠΈΡΠΎΠ²ΠΊΠ° ΠΈ Π΄ΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΡΡΡΠ²ΠΎ ΡΠ΅ΠΎΡΠ΅ΠΌΡ ΠΊΠΎΡΠΈΠ½ΡΡΠΎΠ²
ΠΠ»Ρ Π½Π°ΡΠ°Π»Π° Π²ΡΠΏΠΎΠΌΠ½ΠΈΠΌ ΡΠ΅ΠΎΡΠ΅ΠΌΡ ΠΠΈΡΠ°Π³ΠΎΡΠ°: Π² ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΎΠΌ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ΅ ΠΊΠ²Π°Π΄ΡΠ°Ρ Π΄Π»ΠΈΠ½Ρ Π³ΠΈΠΏΠΎΡΠ΅Π½ΡΠ·Ρ ΡΠ°Π²Π΅Π½ ΡΡΠΌΠΌΠ΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠΎΠ² Π΄Π»ΠΈΠ½ ΠΊΠ°ΡΠ΅ΡΠΎΠ².
Π€ΠΎΡΠΌΡΠ»Π° Π’Π΅ΠΎΡΠ΅ΠΌΡ ΠΠΈΡΠ°Π³ΠΎΡΠ°:
a 2 > + b 2 > = c 2 >, Π³Π΄Π΅ a, b β ΠΊΠ°ΡΠ΅ΡΡ, Ρ β Π³ΠΈΠΏΠΎΡΠ΅Π½ΡΠ·Π°.
Π ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΠΎΠΌΡ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΡ ΠΏΡΠΈΠ±Π°Π²ΠΈΠΌ ΠΈ ΠΎΡΠ½ΠΈΠΌΠ΅ΠΌ ΠΊΠ²Π°Π΄ΡΠ°Ρ Π²ΡΠΎΡΠΎΠ³ΠΎ ΠΊΠ°ΡΠ΅ΡΠ°:
ΠΠΎ ΡΠ°ΠΊ ΠΊΠ°ΠΊ b = c * cos Ξ±, ΡΠΎ
ΠΡΡ ΡΠΎΡΠΌΡΠ»Ρ ΠΌΡ ΠΏΠΎΠ»ΡΡΠΈΠ»ΠΈ Π΄Π»Ρ ΠΊΠ°ΡΠ΅ΡΠΎΠ² Π² ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΎΠΌ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ΅, Π½ΠΎ Π°Π½Π°Π»ΠΎΠ³ΠΈΡΠ½Π°Ρ ΡΠ²ΡΠ·Ρ ΠΌΠ΅ΠΆΠ΄Ρ ΡΡΠΎΡΠΎΠ½ΠΎΠΉ Π° ΠΈ ΠΊΠΎΡΠΈΠ½ΡΡΠΎΠΌ ΠΏΡΠΎΡΠΈΠ²ΠΎΠ»Π΅ΠΆΠ°ΡΠ΅Π³ΠΎ ΡΠ³Π»Π° ΡΠΏΡΠ°Π²Π΅Π΄Π»ΠΈΠ²Π° ΠΈ Π΄Π»Ρ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ»ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ°.
Π’Π΅ΠΎΡΠ΅ΠΌΠ° ΠΊΠΎΡΠΈΠ½ΡΡΠΎΠ² Π·Π²ΡΡΠΈΡ ΡΠ°ΠΊ: ΠΊΠ²Π°Π΄ΡΠ°Ρ ΡΡΠΎΡΠΎΠ½Ρ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ° ΡΠ°Π²Π΅Π½ ΡΡΠΌΠΌΠ΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠΎΠ² Π΄Π²ΡΡ Π΄ΡΡΠ³ΠΈΡ Π΅Π³ΠΎ ΡΡΠΎΡΠΎΠ½ ΠΌΠΈΠ½ΡΡ ΡΠ΄Π²ΠΎΠ΅Π½Π½ΠΎΠ΅ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ ΡΡΠΈΡ ΡΡΠΎΡΠΎΠ½ Π½Π° ΠΊΠΎΡΠΈΠ½ΡΡ ΡΠ³Π»Π° ΠΌΠ΅ΠΆΠ΄Ρ Π½ΠΈΠΌΠΈ.
Π€ΠΎΡΠΌΡΠ»Π° ΡΠ΅ΠΎΡΠ΅ΠΌΡ ΠΊΠΎΡΠΈΠ½ΡΡΠΎΠ²:
Π Π΄ΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΡΡΡΠ²Π΅ ΡΠ΅ΠΎΡΠ΅ΠΌΡ ΠΊΠΎΡΠΈΠ½ΡΡΠΎΠ² ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΠΌ ΡΠΎΡΠΌΡΠ»Ρ Π΄Π»ΠΈΠ½Ρ ΠΎΡΡΠ΅Π·ΠΊΠ° Π² ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ°Ρ . Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ Π΄Π°Π½Π½ΡΡ ΡΠΎΡΠΌΡΠ»Ρ:
Π Π΄ΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΡΡΡΠ²Π΅ ΡΠ΅ΠΎΡΠ΅ΠΌΡ ΠΊΠΎΡΠΈΠ½ΡΡΠΎΠ² BC β ΡΡΠΎ ΡΡΠΎΡΠΎΠ½Π° ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ° ΠΠΠ‘, ΠΊΠΎΡΠΎΡΠ°Ρ ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ΅Π½Π° Π±ΡΠΊΠ²ΠΎΠΉ Π°. ΠΠ²Π΅Π΄Π΅ΠΌ ΡΠ΄ΠΎΠ±Π½ΡΡ ΡΠΈΡΡΠ΅ΠΌΡ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ ΠΈ Π½Π°ΠΉΠ΄Π΅ΠΌ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ Π½ΡΠΆΠ½ΡΡ
Π½Π°ΠΌ ΡΠΎΡΠ΅ΠΊ. Π£ ΡΠΎΡΠΊΠΈ Π ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ (Ρ; 0).
ΠΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΡΠΎΡΠΊΠΈ Π‘ β (b cos Ξ±; b sin Ξ±) ΠΏΡΠΈ Ξ± β (0Β° ; 180Β°).
cos 2 Ξ± + sin 2 Ξ± = 1 β ΠΎΡΠ½ΠΎΠ²Π½ΠΎΠ΅ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΡΠΎΠΆΠ΄Π΅ΡΡΠ²ΠΎ.
Π§ΡΠΎ ΠΈ ΡΡΠ΅Π±ΠΎΠ²Π°Π»ΠΎΡΡ Π΄ΠΎΠΊΠ°Π·Π°ΡΡ.
Π‘ΠΎΠ²Π΅Ρ: ΡΡΠΎΠ±Ρ Π±ΡΡΡΡΠ΅Π΅ ΡΠ°Π·ΠΎΠ±ΡΠ°ΡΡΡΡ Π² ΡΠ»ΠΎΠΆΠ½ΠΎΠΉ ΡΠ΅ΠΌΠ΅, Π·Π°ΠΏΠΈΡΠΈΡΠ΅ΡΡ Π½Π° ΠΎΠ½Π»Π°ΠΉΠ½-ΠΊΡΡΡΡ ΠΏΠΎ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ΅ Π΄Π»Ρ Π΄Π΅ΡΠ΅ΠΉ ΠΈ ΠΏΠΎΠ΄ΡΠΎΡΡΠΊΠΎΠ².
Π‘Π»Π΅Π΄ΡΡΠ²ΠΈΠ΅ ΠΈΠ· ΡΠ΅ΠΎΡΠ΅ΠΌΡ ΠΊΠΎΡΠΈΠ½ΡΡΠΎΠ²: ΡΠ΅ΠΎΡΠ΅ΠΌΡ ΠΊΠΎΡΠΈΠ½ΡΡΠΎΠ² ΡΠ°ΠΊΠΆΠ΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ Π΄Π»Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΊΠΎΡΠΈΠ½ΡΡΠ° ΡΠ³Π»Π° ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ°:
Π‘ΡΠΎΡΠΌΡΠ»ΠΈΡΡΠ΅ΠΌ Π΅ΡΠ΅ ΠΎΠ΄Π½ΠΎ Π΄ΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΡΡΡΠ²ΠΎ ΡΠ΅ΠΎΡΠ΅ΠΌΡ ΠΊΠΎΡΠΈΠ½ΡΡΠΎΠ².
ΠΡΡΡΡ Π½Π°ΠΌ Π΄Π°Π½ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊ ABC, Π² ΠΊΠΎΡΠΎΡΠΎΠΌ ΠΈΠ· Π²Π΅ΡΡΠΈΠ½Ρ C Π½Π° ΡΡΠΎΡΠΎΠ½Ρ AB ΠΎΠΏΡΡΡΠΈΠ»ΠΈ Π²ΡΡΠΎΡΡ CD. ΠΡΠΎ Π·Π½Π°ΡΠΈΡ:
ΠΠ°ΠΏΠΈΡΠ΅ΠΌ ΡΠ΅ΠΎΡΠ΅ΠΌΡ ΠΠΈΡΠ°Π³ΠΎΡΠ° Π΄Π»Ρ Π΄Π²ΡΡ ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΡΡ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠΎΠ² ADC ΠΈ BDC:
ΠΡΠΈΡΠ°Π²Π½ΠΈΠ²Π°Π΅ΠΌ ΠΏΡΠ°Π²ΡΠ΅ ΡΠ°ΡΡΠΈ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ:
ΠΡΠ»ΠΈ ΠΎΠ΄ΠΈΠ½ ΠΈΠ· ΡΠ³Π»ΠΎΠ² ΠΏΡΠΈ ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠΈ ΡΡΠΏΠΎΠΉ (Π²ΡΡΠΎΡΠ° ΡΠΏΠΈΡΠ°Π΅ΡΡΡ Π² ΠΏΡΠΎΠ΄ΠΎΠ»ΠΆΠ΅Π½ΠΈΠ΅ ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΡ), ΠΏΠΎΠ»Π½ΠΎΡΡΡΡ Π°Π½Π°Π»ΠΎΠ³ΠΈΡΠ΅Π½ ΡΠ°ΡΡΠΌΠΎΡΡΠ΅Π½Π½ΠΎΠΌΡ Π²ΡΡΠ΅.
ΠΠΏΡΠ΅Π΄Π΅Π»ΠΈΠΌ ΡΡΠΎΡΠΎΠ½Ρ b ΠΈ c:
Π€ΠΎΡΠΌΡΠ»ΠΈΡΠΎΠ²ΠΊΠ° ΡΠ΅ΠΎΡΠ΅ΠΌΡ Π΄Π»Ρ ΠΊΠ°ΠΆΠ΄ΠΎΠΉ ΠΈΠ· ΡΡΠΎΡΠΎΠ½ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ°
Π’Π΅ΠΎΡΠ΅ΠΌΠ° ΠΊΠΎΡΠΈΠ½ΡΡΠΎΠ² ΡΠΏΡΠ°Π²Π΅Π΄Π»ΠΈΠ²Π° Π΄Π»Ρ Π²ΡΠ΅Ρ ΡΡΠΎΡΠΎΠ½ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ°, ΡΠΎ Π΅ΡΡΡ:
Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, ΡΠ΅ΠΎΡΠ΅ΠΌΠ° ΠΊΠΎΡΠΈΠ½ΡΡΠΎΠ² ΠΎΠ±ΠΎΠ±ΡΠ°Π΅Ρ ΡΠ΅ΠΎΡΠ΅ΠΌΡ ΠΠΈΡΠ°Π³ΠΎΡΠ°. ΠΠ°ΠΊΠΎΠ½ ΠΊΠΎΡΠΈΠ½ΡΡΠ° ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ Π΄Π»Ρ Π»ΡΠ±ΠΎΠ³ΠΎ Π²ΠΈΠ΄Π° ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ°.
ΠΠΏΠΈΡΠ°Π½ΠΈΠ΅ ΡΠΎΡΠΌΡΠ»Ρ ΠΊΠΎΡΠΈΠ½ΡΡΠ° ΡΠ³Π»Π° ΠΈΠ· ΡΠ΅ΠΎΡΠ΅ΠΌΡ ΠΊΠΎΡΠΈΠ½ΡΡΠΎΠ²
Π’Π΅ΠΎΡΠ΅ΠΌΠ° ΠΊΠΎΡΠΈΠ½ΡΡΠΎΠ² ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ Π½Π°ΠΉΡΠΈ ΠΊΠ°ΠΊ ΠΊΠΎΡΠΈΠ½ΡΡ, ΡΠ°ΠΊ ΠΈ ΡΠ³ΠΎΠ» ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ°. ΠΠ°ΠΉΠ΄ΡΠΌ ΠΊΠΎΡΠΈΠ½ΡΡΡ ΡΠ³Π»ΠΎΠ²:
ΠΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΡΠ³Π»Π° Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΠΊΠΎΡΠΈΠ½ΡΡΠ°
Π ΡΠ΅ΠΏΠ΅ΡΡ ΠΎΠ±ΡΠ°ΡΠΈΠΌ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ Π½Π° ΡΠ³Π»Ρ.
ΠΠ°ΠΊ ΠΌΡ ΡΠΆΠ΅ Π·Π½Π°Π΅ΠΌ, ΠΊΠΎΡΠΈΠ½ΡΡ ΡΠ³Π»Π° ΠΈΠ· ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠ° (0Β°; 180Β°) ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅Ρ ΡΠ³ΠΎΠ» (Π² ΠΎΡΠ»ΠΈΡΠΈΠ΅ ΠΎΡ Π΅Π³ΠΎ ΡΠΈΠ½ΡΡΠ°).
ΠΡΡΡΡ Π½Π°ΠΌ Π΄Π°Π½Π° Π΅Π΄ΠΈΠ½ΠΈΡΠ½Π°Ρ ΠΏΠΎΠ»ΡΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΡ. ΠΡΠ»ΠΈ Π½Π°ΠΌ Π·Π°Π΄Π°Π½ cos Ξ±, ΡΠΎ Π½Π°ΠΌ Π·Π°Π΄Π°Π½Π° ΡΠΎΡΠΊΠ° Π½Π° Π²Π΅ΡΡ Π½Π΅ΠΉ ΠΏΠΎΠ»ΡΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ ΠΈ Π·Π°Π΄Π°Π½ ΡΠ³ΠΎΠ» Ξ±. Π‘Π»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, cos Ξ± ΠΎΠ΄Π½ΠΎΠ·Π½Π°ΡΠ½ΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅Ρ ΡΠΎΡΠΊΡ Π(cos Ξ±; sin Ξ±), ΠΈ ΠΎΠ΄Π½ΠΎΠ·Π½Π°ΡΠ½ΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΡΡΡ ΡΠ³ΠΎΠ» β AOM.
Π Π°ΡΡΠΌΠΎΡΡΠ΅Π½ΠΈΠ΅ ΠΏΡΠ΅Π΄Π΅Π»ΠΎΠ² ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡ cos Ξ± ΠΈ sin Ξ±
Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ ΠΏΡΠ΅Π΄Π΅Π»Ρ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡ ΡΠΈΠ½ΡΡΠ° ΠΈ ΠΊΠΎΡΠΈΠ½ΡΡΠ° Ξ±. ΠΡΠΏΠΎΠΌΠ½ΠΈΠΌ, ΡΡΠΎ Π΅ΡΠ»ΠΈ Ξ± β ΡΠ³ΠΎΠ» ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ°, ΡΠΎ ΠΎΠ½ Π»Π΅ΠΆΠΈΡ Π² ΠΏΡΠ΅Π΄Π΅Π»Π°Ρ ΠΎΡ 0Β° Π΄ΠΎ 180Β°.
ΠΡΠΈΠΌΠ΅ΡΡ ΡΠ΅ΡΠ΅Π½ΠΈΡ Π·Π°Π΄Π°Ρ
ΠΡΠΈ ΠΏΠΎΠΌΠΎΡΠΈ ΡΠ΅ΠΎΡΠ΅ΠΌΡ ΠΊΠΎΡΠΈΠ½ΡΡΠΎΠ² ΠΌΠΎΠΆΠ½ΠΎ ΡΠ΅ΡΠ°ΡΡ Π·Π°Π΄Π°ΡΠΊΠΈ ΠΏΠΎ Π³Π΅ΠΎΠΌΠ΅ΡΡΠΈΠΈ. Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ ΠΈΠ½ΡΠ΅ΡΠ΅ΡΠ½ΡΠ΅ ΡΠ»ΡΡΠ°ΠΈ.
ΠΡΠΈΠΌΠ΅Ρ 1. ΠΠ°Π½ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊ ΠΠΠ‘. ΠΠ°ΠΉΡΠΈ Π΄Π»ΠΈΠ½Ρ Π‘Π.
β C = 90Β°, ΠΠ = 9, ΠΠ‘ = 3, AM/MB = 1/2, Π³Π΄Π΅ Π β ΡΠΎΡΠΊΠ° Π½Π° Π³ΠΈΠΏΠΎΡΠ΅Π½ΡΠ·Π΅ ΠΠ.
ΠΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΡΠΉ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊ
ΠΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΡΠΉ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊ β ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊ, Π² ΠΊΠΎΡΠΎΡΠΎΠΌ ΠΎΠ΄ΠΈΠ½ ΡΠ³ΠΎΠ» ΠΏΡΡΠΌΠΎΠΉ (ΡΠΎ Π΅ΡΡΡ ΡΠ°Π²Π΅Π½ 90Λ).
Π‘ΡΠΎΡΠΎΠ½Π°, ΠΏΡΠΎΡΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½Π°Ρ ΠΏΡΡΠΌΠΎΠΌΡ ΡΠ³Π»Ρ, Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ Π³ΠΈΠΏΠΎΡΠ΅Π½ΡΠ·ΠΎΠΉ ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ°.
ΠΡΠΈΠ·Π½Π°ΠΊΠΈ ΡΠ°Π²Π΅Π½ΡΡΠ²Π° ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΡΡ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠΎΠ²
ΠΡΠ»ΠΈ ΠΊΠ°ΡΠ΅ΡΡ ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ° ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½ΠΎ ΡΠ°Π²Π½Ρ ΠΊΠ°ΡΠ΅ΡΠ°ΠΌ Π΄ΡΡΠ³ΠΎΠ³ΠΎ ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ°, ΡΠΎ ΡΠ°ΠΊΠΈΠ΅ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠΈ ΡΠ°Π²Π½Ρ ( ΠΏΠΎ Π΄Π²ΡΠΌ ΠΊΠ°ΡΠ΅ΡΠ°ΠΌ ).
ΠΡΠ»ΠΈ ΠΊΠ°ΡΠ΅Ρ ΠΈ ΠΏΡΠΈΠ»Π΅ΠΆΠ°ΡΠΈΠΉ ΠΊ Π½Π΅ΠΌΡ ΠΎΡΡΡΡΠΉ ΡΠ³ΠΎΠ» ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ° ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½ΠΎ ΡΠ°Π²Π½Ρ ΠΊΠ°ΡΠ΅ΡΡ ΠΈ ΠΏΡΠΈΠ»Π΅ΠΆΠ°ΡΠ΅ΠΌΡ ΠΊ Π½Π΅ΠΌΡ ΠΎΡΡΡΠΎΠΌΡ ΡΠ³Π»Ρ Π΄ΡΡΠ³ΠΎΠ³ΠΎ ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ°, ΡΠΎ ΡΠ°ΠΊΠΈΠ΅ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠΈ ΡΠ°Π²Π½Ρ ( ΠΏΠΎ ΠΊΠ°ΡΠ΅ΡΡ ΠΈ ΠΎΡΡΡΠΎΠΌΡ ΡΠ³Π»Ρ ).
ΠΡΠ»ΠΈ Π³ΠΈΠΏΠΎΡΠ΅Π½ΡΠ·Π° ΠΈ ΠΎΡΡΡΡΠΉ ΡΠ³ΠΎΠ» ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ° ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½ΠΎ ΡΠ°Π²Π½Ρ Π³ΠΈΠΏΠΎΡΠ΅Π½ΡΠ·Π΅ ΠΈ ΠΎΡΡΡΠΎΠΌΡ ΡΠ³Π»Ρ Π΄ΡΡΠ³ΠΎΠ³ΠΎ ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ°, ΡΠΎ ΡΠ°ΠΊΠΈΠ΅ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠΈ ΡΠ°Π²Π½Ρ ( ΠΏΠΎ Π³ΠΈΠΏΠΎΡΠ΅Π½ΡΠ·Π΅ ΠΈ ΠΎΡΡΡΠΎΠΌΡ ΡΠ³Π»Ρ ).
ΠΡΠ»ΠΈ Π³ΠΈΠΏΠΎΡΠ΅Π½ΡΠ·Π° ΠΈ ΠΊΠ°ΡΠ΅Ρ ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ° ΡΠ°Π²Π½Ρ Π³ΠΈΠΏΠΎΡΠ΅Π½ΡΠ·Π΅ ΠΈ ΠΊΠ°ΡΠ΅ΡΡ Π΄ΡΡΠ³ΠΎΠ³ΠΎ ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ°, ΡΠΎ ΡΠ°ΠΊΠΈΠ΅ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠΈ ΡΠ°Π²Π½Ρ ( ΠΏΠΎ Π³ΠΈΠΏΠΎΡΠ΅Π½ΡΠ·Π΅ ΠΈ ΠΊΠ°ΡΠ΅ΡΡ ).
Π‘Π²ΠΎΠΉΡΡΠ²Π° ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ°
1. Π‘ΡΠΌΠΌΠ° ΠΎΡΡΡΡΡ ΡΠ³Π»ΠΎΠ² ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ° ΡΠ°Π²Π½Π° 90Λ.
2. ΠΠ°ΡΠ΅Ρ, ΠΏΡΠΎΡΠΈΠ²ΠΎΠ»Π΅ΠΆΠ°ΡΠΈΠΉ ΡΠ³Π»Ρ Π² 30Λ, ΡΠ°Π²Π΅Π½ ΠΏΠΎΠ»ΠΎΠ²ΠΈΠ½Π΅ Π³ΠΈΠΏΠΎΡΠ΅Π½ΡΠ·Ρ.
Π ΠΎΠ±ΡΠ°ΡΠ½ΠΎ, Π΅ΡΠ»ΠΈ Π² ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ΅ ΠΊΠ°ΡΠ΅Ρ Π²Π΄Π²ΠΎΠ΅ ΠΌΠ΅Π½ΡΡΠ΅ Π³ΠΈΠΏΠΎΡΠ΅Π½ΡΠ·Ρ, ΡΠΎ Π½Π°ΠΏΡΠΎΡΠΈΠ² Π½Π΅Π³ΠΎ Π»Π΅ΠΆΠΈΡ ΡΠ³ΠΎΠ» Π² 30Λ.
3. Π’Π΅ΠΎΡΠ΅ΠΌΠ° ΠΠΈΡΠ°Π³ΠΎΡΠ°:
, Π³Π΄Π΅
β ΠΊΠ°ΡΠ΅ΡΡ,
β Π³ΠΈΠΏΠΎΡΠ΅Π½ΡΠ·Π°. ΠΠΈΠ΄Π΅ΠΎΠ΄ΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΡΡΡΠ²ΠΎ
4. ΠΠ»ΠΎΡΠ°Π΄Ρ ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ° Ρ ΠΊΠ°ΡΠ΅ΡΠ°ΠΌΠΈ
:
5. ΠΡΡΠΎΡΠ° ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ°, ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½Π½Π°Ρ ΠΊ Π³ΠΈΠΏΠΎΡΠ΅Π½ΡΠ·Π΅ Π²ΡΡΠ°ΠΆΠ°Π΅ΡΡΡ ΡΠ΅ΡΠ΅Π· ΠΊΠ°ΡΠ΅ΡΡ
ΠΈ Π³ΠΈΠΏΠΎΡΠ΅Π½ΡΠ·Ρ
ΡΠ»Π΅Π΄ΡΡΡΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ:
6. Π¦Π΅Π½ΡΡ ΠΎΠΏΠΈΡΠ°Π½Π½ΠΎΠΉ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ β Π΅ΡΡΡ ΡΠ΅ΡΠ΅Π΄ΠΈΠ½Π° Π³ΠΈΠΏΠΎΡΠ΅Π½ΡΠ·Ρ.
7. Π Π°Π΄ΠΈΡΡ ΠΎΠΏΠΈΡΠ°Π½Π½ΠΎΠΉ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ Π΅ΡΡΡ ΠΏΠΎΠ»ΠΎΠ²ΠΈΠ½Π° Π³ΠΈΠΏΠΎΡΠ΅Π½ΡΠ·Ρ
:
8. ΠΠ΅Π΄ΠΈΠ°Π½Π°, ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½Π½Π°Ρ ΠΊ Π³ΠΈΠΏΠΎΡΠ΅Π½ΡΠ·Π΅, ΡΠ°Π²Π½Π° Π΅Π΅ ΠΏΠΎΠ»ΠΎΠ²ΠΈΠ½Π΅
9. Π Π°Π΄ΠΈΡΡ Π²ΠΏΠΈΡΠ°Π½Π½ΠΎΠΉ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ Π²ΡΡΠ°ΠΆΠ°Π΅ΡΡΡ ΡΠ΅ΡΠ΅Π· ΠΊΠ°ΡΠ΅ΡΡ
ΠΈ Π³ΠΈΠΏΠΎΡΠ΅Π½ΡΠ·Ρ
ΡΠ»Π΅Π΄ΡΡΡΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ:
Π’ΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠΎΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡ Π² ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΎΠΌ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ΅ ΡΠΌΠΎΡΡΠΈΡΠ΅ Π·Π΄Π΅ΡΡ.
ΠΠ΅ΠΊΠΎΡΠΎΡΡΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²Π° ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΡΡ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠΎΠ²
Π£ΡΠΎΠΊ 23. ΠΠ΅ΠΎΠΌΠ΅ΡΡΠΈΡ 7 ΠΊΠ»Π°ΡΡ
Π Π΄Π°Π½Π½ΡΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ Π²Ρ Π½Π΅ ΠΌΠΎΠΆΠ΅ΡΠ΅ ΠΏΠΎΡΠΌΠΎΡΡΠ΅ΡΡ ΠΈΠ»ΠΈ ΡΠ°Π·Π΄Π°ΡΡ Π²ΠΈΠ΄Π΅ΠΎΡΡΠΎΠΊ ΡΡΠ΅Π½ΠΈΠΊΠ°ΠΌ
Π§ΡΠΎΠ±Ρ ΠΏΠΎΠ»ΡΡΠΈΡΡ Π΄ΠΎΡΡΡΠΏ ΠΊ ΡΡΠΎΠΌΡ ΠΈ Π΄ΡΡΠ³ΠΈΠΌ Π²ΠΈΠ΄Π΅ΠΎΡΡΠΎΠΊΠ°ΠΌ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ°, Π²Π°ΠΌ Π½ΡΠΆΠ½ΠΎ Π΄ΠΎΠ±Π°Π²ΠΈΡΡ Π΅Π³ΠΎ Π² Π»ΠΈΡΠ½ΡΠΉ ΠΊΠ°Π±ΠΈΠ½Π΅Ρ, ΠΏΡΠΈΠΎΠ±ΡΠ΅Π² Π² ΠΊΠ°ΡΠ°Π»ΠΎΠ³Π΅.
ΠΠΎΠ»ΡΡΠΈΡΠ΅ Π½Π΅Π²Π΅ΡΠΎΡΡΠ½ΡΠ΅ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΠΈ
ΠΠΎΠ½ΡΠΏΠ΅ΠΊΡ ΡΡΠΎΠΊΠ° «ΠΠ΅ΠΊΠΎΡΠΎΡΡΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²Π° ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΡΡ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠΎΠ²»
Π‘ΡΠΌΠΌΠ° ΡΠ³Π»ΠΎΠ² ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ° ΡΠ°Π²Π½Π° 180 Π³ΡΠ°Π΄ΡΡΠΎΠ².
Π‘ΡΠΌΠΌΠ° Π΄Π²ΡΡ ΠΎΡΡΡΡΡ ΡΠ³Π»ΠΎΠ² ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ° ΡΠ°Π²Π½Π° 90 Π³ΡΠ°Π΄ΡΡΠΎΠ².
Π’Π°ΠΊ ΠΊΠ°ΠΊ ΡΡΠΌΠΌΠ° ΡΠ³Π»ΠΎΠ² ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ° ΡΠ°Π²Π½Π° 180 Π³ΡΠ°Π΄ΡΡΠΎΠ², ΡΠΎ:
Π§ΡΠΎ ΠΈ ΡΡΠ΅Π±ΠΎΠ²Π°Π»ΠΎΡΡ Π΄ΠΎΠΊΠ°Π·Π°ΡΡ.
ΠΠ°ΡΠ΅Ρ ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ°, Π»Π΅ΠΆΠ°ΡΠΈΠΉ ΠΏΡΠΎΡΠΈΠ² ΡΠ³Π»Π° Π² 30 Π³ΡΠ°Π΄ΡΡΠΎΠ², ΡΠ°Π²Π΅Π½ ΠΏΠΎΠ»ΠΎΠ²ΠΈΠ½Π΅ Π³ΠΈΠΏΠΎΡΠ΅Π½ΡΠ·Ρ.
ΠΡΠΈΠ»ΠΎΠΆΠΈΠΌ ΠΊ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΡ ΠΠΠ‘ ΡΠ°Π²Π½ΡΠΉ Π΅ΠΌΡ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊ ΠΠ‘D ΡΠ»Π΅Π΄ΡΡΡΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ:
ΠΠΎΠ»ΡΡΠΈΠ»ΠΈ, ΡΡΠΎ Ρ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ° ΠΠD Π²ΡΠ΅ ΡΠ³Π»Ρ ΡΠ°Π²Π½Ρ ΠΏΠΎ 60 Π³ΡΠ°Π΄ΡΡΠΎΠ², ΡΠΎ Π΅ΡΡΡ ΠΎΠ½ ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠ°Π²Π½ΠΎΡΡΠΎΡΠΎΠ½Π½ΠΈΠΌ. ΠΠΎΠ»ΡΡΠ°Π΅ΠΌ:
Π§ΡΠΎ ΠΈ ΡΡΠ΅Π±ΠΎΠ²Π°Π»ΠΎΡΡ Π΄ΠΎΠΊΠ°Π·Π°ΡΡ.
ΠΡΠ»ΠΈ ΠΊΠ°ΡΠ΅Ρ ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ° ΡΠ°Π²Π΅Π½ ΠΏΠΎΠ»ΠΎΠ²ΠΈΠ½Π΅ Π³ΠΈΠΏΠΎΡΠ΅Π½ΡΠ·Ρ, ΡΠΎ ΡΠ³ΠΎΠ», Π»Π΅ΠΆΠ°ΡΠΈΠΉ ΠΏΡΠΎΡΠΈΠ² ΡΡΠΎΠ³ΠΎ ΠΊΠ°ΡΠ΅ΡΠ°, ΡΠ°Π²Π΅Π½ 30 Π³ΡΠ°Π΄ΡΡΠΎΠ².
ΠΡΠΈΠ»ΠΎΠΆΠΈΠΌ ΠΊ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΡ ΠΠΠ‘ ΡΠ°Π²Π½ΡΠΉ Π΅ΠΌΡ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊ ΠΠ‘D ΡΠ»Π΅Π΄ΡΡΡΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ:
ΠΠΎΠ»ΡΡΠΈΠ»ΠΈ ΡΠ°Π²Π½ΠΎΡΡΠΎΡΠΎΠ½Π½ΠΈΠΉ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊ ΠΠD. ΠΠ·Π²Π΅ΡΡΠ½ΠΎ, ΡΡΠΎ Π²ΡΠ΅ ΡΠ³Π»Ρ ΡΠ°Π²Π½ΠΎΡΡΠΎΡΠΎΠ½Π½Π΅Π³ΠΎ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ° ΡΠ°Π²Π½Ρ 60 Π³ΡΠ°Π΄ΡΡΠ°ΠΌ. ΠΠΎΠ»ΡΠ°Π΅ΠΌ:
Π§ΡΠΎ ΠΈ ΡΡΠ΅Π±ΠΎΠ²Π°Π»ΠΎΡΡ Π΄ΠΎΠΊΠ°Π·Π°ΡΡ.
Π‘ΡΠΌΠΌΠ° Π³ΠΈΠΏΠΎΡΠ΅Π½ΡΠ·Ρ ΠΈ ΠΊΠ°ΡΠ΅ΡΠ°, Π»Π΅ΠΆΠ°ΡΠ΅Π³ΠΎ ΠΏΡΠΎΡΠΈΠ² ΡΠ³Π»Π° Π² 30 Π³ΡΠ°Π΄ΡΡΠΎΠ², ΡΠ°Π²Π½Π° 15 ΡΠ°Π½ΡΠΈΠΌΠ΅ΡΡΠΎΠ². ΠΠ°ΠΉΡΠΈ Π΄Π»ΠΈΠ½Ρ Π³ΠΈΠΏΠΎΡΠ΅Π½ΡΠ·Ρ.
ΠΠΎΠ΄ΡΡΠ°Π²ΠΈΠΌ ΡΡΠΎ Π² ΠΏΡΠ΅Π΄ΡΠ΄ΡΡΠ΅Π΅ ΡΠ°Π²Π΅Π½ΡΡΠ²ΠΎ ΠΈ ΠΏΠΎΠ»ΡΡΠ°Π΅ΠΌ:
Π ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΎΠΌ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ΅ ΠΠΠ‘, β Π‘=90 Π³ΡΠ°Π΄ΡΡΠΎΠ², Π° β ΠΠΠ‘=60 Π³ΡΠ°Π΄ΡΡΠΎΠ². ΠΠ°ΠΉΡΠΈ Π΄Π»ΠΈΠ½Ρ ΠΊΠ°ΡΠ΅ΡΠ° ΠΠ‘, Π΅ΡΠ»ΠΈ Π²ΡΡΠΎΡΠ° Π‘D ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ° ΠΠ‘Π ΡΠ°Π²Π½Π° 5 ΡΠ°Π½ΡΠΈΠΌΠ΅ΡΡΠΎΠ².
Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΡΠΉ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊ ΠΠΠ‘. β ΠΠ‘Π=90 Π³ΡΠ°Π΄ΡΡΠΎΠ², β ΠΠΠ‘=60 Π³ΡΠ°Π΄ΡΡΠΎΠ². Π ΡΠ°ΠΊ ΠΊΠ°ΠΊ ΡΡΠΌΠΌΠ° ΠΎΡΡΡΡΡ ΡΠ³Π»ΠΎΠ² ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ° ΡΠ°Π²Π½Π° 90 Π³ΡΠ°Π΄ΡΡΠΎΠ², ΡΠΎ β ΠΠΠ‘=90-60=30 Π³ΡΠ°Π΄ΡΡΠΎΠ².
Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΡΠΉ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊ BCD:
Π£ Π½Π΅Π³ΠΎ β ΠΠ‘D=30 Π³ΡΠ°Π΄ΡΡΠΎΠ², ΡΠ°ΠΊ ΠΊΠ°ΠΊ ΠΏΠΎ ΡΡΠ»ΠΎΠ²ΠΈΡ ΠΠ‘=2*ΠD.
ΠΠΎ ΡΡΠ»ΠΎΠ²ΠΈΡ Π·Π°Π΄Π°ΡΠΈ β ΠΠ‘Π=90 Π³ΡΠ°Π΄ΡΡΠΎΠ², Π° β ΠΠ‘D=30 Π³ΡΠ°Π΄ΡΡΠΎΠ², Π·Π½Π°ΡΠΈΡ, β ΠΠ‘D=60 Π³ΡΠ°Π΄ΡΡΠΎΠ².
Π’Π΅ΠΏΠ΅ΡΡ ΡΠ°ΡΡΠΌΠΎΡΡΠΈΠΌ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊ ΠΠΠ‘. Π£ Π½Π΅Π³ΠΎ β ΠΠΠ‘=30 Π³ΡΠ°Π΄ΡΡΠΎΠ². Π‘Π»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, Π³ΠΈΠΏΠΎΡΠ΅Π½ΡΠ·Π° ΠΠ=2*ΠΠ‘, ΡΠ°ΠΊ ΠΊΠ°ΠΊ ΠΊΠ°ΡΠ΅Ρ ΠΠ‘ Π»Π΅ΠΆΠΈΡ ΠΏΡΠΎΡΠΈΠ² ΡΠ³Π»Π° Π² 30 Π³ΡΠ°Π΄ΡΡΠΎΠ². ΠΠΎ ΡΡΠ»ΠΎΠ²ΠΈΡ Π·Π°Π΄Π°ΡΠΈ ΠΠ‘=2*ΠD.
ΠΠ°ΠΊ Π΄ΠΎΠΊΠ°Π·Π°ΡΡ ΡΡΠΎ ΡΠ³ΠΎΠ» ΠΏΡΡΠΌΠΎΠΉ
ΠΡΠ½ΠΎΠ²Π½ΡΠ΅ ΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠΎΠΎΡΡΠ½ΠΎΡΠ΅Π½ΠΈΡ Π² ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΎΠΌ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ΅
Β§1. ΠΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΡΠΉ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊ. ΠΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠΎΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡ.
ΠΡΠ½ΠΎΠ²Π½ΡΠ΅ ΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠΎΠΎΡΡΠ½ΠΎΡΠ΅Π½ΠΈΡ Π² ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΎΠΌ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ΅
ΠΡΡΡΡ `ABC` ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΡΠΉ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊ Ρ ΠΏΡΡΠΌΡΠΌ ΡΠ³Π»ΠΎΠΌ `C` ΠΈ ΠΎΡΡΡΡΠΌ ΡΠ³Π»ΠΎΠΌ ΠΏΡΠΈ Π²Π΅ΡΡΠΈΠ½Π΅ `A`, ΡΠ°Π²Π½ΡΠΌ `alpha` (ΡΠΈΡ. 1).
ΠΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΠΌ ΠΎΠ±ΡΡΠ½ΡΠ΅ ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ΅Π½ΠΈΡ:
`a_c` ΠΈ `b_c` β ΠΏΡΠΎΠ΅ΠΊΡΠΈΠΈ `BD` ΠΈ `AD` ΠΊΠ°ΡΠ΅ΡΠΎΠ² Π½Π° Π³ΠΈΠΏΠΎΡΠ΅Π½ΡΠ·Ρ;
`h` β Π²ΡΡΠΎΡΠ° `CD`, ΠΎΠΏΡΡΠ΅Π½Π½Π°Ρ Π½Π° Π³ΠΈΠΏΠΎΡΠ΅Π½ΡΠ·Ρ;
`m_c` β ΠΌΠ΅Π΄ΠΈΠ°Π½Π° `CM`, ΠΏΡΠΎΠ²Π΅Π΄ΡΠ½Π½Π°Ρ ΠΊ Π³ΠΈΠΏΠΎΡΠ΅Π½ΡΠ·Π΅;
`R` β ΡΠ°Π΄ΠΈΡΡ ΠΎΠΏΠΈΡΠ°Π½Π½ΠΎΠΉ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ;
`r` β ΡΠ°Π΄ΠΈΡΡ Π²ΠΏΠΈΡΠ°Π½Π½ΠΎΠΉ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ.
`sin alpha = a/c`, `cos alpha = b/c` ΠΈ `»tg»alpha = a/b`.
ΠΠ½Π°ΡΠ΅Π½ΠΈΡ ΡΠΈΠ½ΡΡΠ°, ΠΊΠΎΡΠΈΠ½ΡΡΠ° ΠΈ ΡΠ°Π½Π³Π΅Π½ΡΠ° ΠΎΡΡΡΠΎΠ³ΠΎ ΡΠ³Π»Π° ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ° Π·Π°Π²ΠΈΡΡΡ ΡΠΎΠ»ΡΠΊΠΎ ΠΎΡ ΠΌΠ΅ΡΡ ΡΠ³Π»Π° ΠΈ Π½Π΅ Π·Π°Π²ΠΈΡΡΡ ΠΎΡ ΡΠ°Π·ΠΌΠ΅ΡΠΎΠ² ΠΈ ΡΠ°ΡΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΡ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ°.
Π ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΎΠΌ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ΅ ΠΊΠ²Π°Π΄ΡΠ°Ρ Π³ΠΈΠΏΠΎΡΠ΅Π½ΡΠ·Ρ ΡΠ°Π²Π΅Π½ ΡΡΠΌΠΌΠ΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠΎΠ² ΠΊΠ°ΡΠ΅ΡΠΎΠ²:
`c^2 = a^2 + b^2`
ΠΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΡΡΡΠ²ΠΎ ΡΠ΅ΠΎΡΠ΅ΠΌΡ ΠΏΠΎΠ²ΡΠΎΡΠΈΡΠ΅ ΠΏΠΎ ΡΡΠ΅Π±Π½ΠΈΠΊΡ.
ΠΡΠ²Π΅Π΄Π΅ΠΌ ΡΡΠ΄ ΡΠΎΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠΉ ΠΌΠ΅ΠΆΠ΄Ρ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠ°ΠΌΠΈ ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ°.
ΠΠ²Π°Π΄ΡΠ°Ρ ΠΊΠ°ΡΠ΅ΡΠ° ΡΠ°Π²Π΅Π½ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡ Π³ΠΈΠΏΠΎΡΠ΅Π½ΡΠ·Ρ ΠΈ Π΅Π³ΠΎ ΠΏΡΠΎΠ΅ΠΊΡΠΈΠΈ Π½Π° Π³ΠΈΠΏΠΎΡΠ΅Π½ΡΠ·Ρ
ΠΠ²Π°Π΄ΡΠ°Ρ Π²ΡΡΠΎΡΡ, ΠΎΠΏΡΡΠ΅Π½Π½ΠΎΠΉ Π½Π° Π³ΠΈΠΏΠΎΡΠ΅Π½ΡΠ·Ρ, ΡΠ°Π²Π΅Π½ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡ ΠΏΡΠΎΠ΅ΠΊΡΠΈΠΈ ΠΊΠ°ΡΠ΅ΡΠΎΠ² Π½Π° Π³ΠΈΠΏΠΎΡΠ΅Π½ΡΠ·Ρ
ΠΠ· ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ° `ACD` (ΡΠΈΡ. 1) ΠΈΠΌΠ΅Π΅ΠΌ `»tg»alpha = (CD)/(AD)`, Π° ΠΈΠ· ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ° `BCD` `»tg»alpha = (BD)/(CD)`.
ΠΠ½Π°ΡΠΈΡ `(BD)/(CD) = (CD)/(AD)`, ΠΎΡΠΊΡΠ΄Π° `CD^2 = AD * BD`, Ρ. Π΅. `h^2 = a_c * b_c`.
ΠΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΊΠ°ΡΠ΅ΡΠΎΠ² ΡΠ°Π²Π½ΠΎ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡ Π³ΠΈΠΏΠΎΡΠ΅Π½ΡΠ·Ρ ΠΈ Π²ΡΡΠΎΡΡ, ΠΎΠΏΡΡΠ΅Π½Π½ΠΎΠΉ Π½Π° Π³ΠΈΠΏΠΎΡΠ΅Π½ΡΠ·Ρ
ΠΠ· ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ° `ABC` ΠΈΠΌΠ΅Π΅ΠΌ `sin alpha = (BC)/(AB)`, Π° ΠΈΠ· ΡΡΠ΅ΡΠΎΠ»ΡΠ½ΠΈΠΊΠ° `ACD` `sin alpha = (CD)/(AC)`.
Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, `(BC)/(AB) = (CD)/(AC)`, ΠΎΡΠΊΡΠ΄Π° `BC * AC = AB * CD`, Ρ. Π΅. `a * b = c * h`.
ΠΠ΅Π΄ΠΈΠ°Π½Π°, ΠΏΡΠΎΠ²Π΅Π΄ΡΠ½Π½Π°Ρ ΠΊ Π³ΠΈΠΏΠΎΡΠ΅Π½ΡΠ·Π΅, ΡΠ°Π²Π½Π° ΠΏΠΎΠ»ΠΎΠ²ΠΈΠ½Π΅ Π³ΠΈΠΏΠΎΡΠ΅Π½ΡΠ·Ρ, Ρ. Π΅.
.
ΠΠΎΠ»Π΅Π·Π½ΠΎ ΡΠ°ΠΊΠΆΠ΅ Π·Π°ΠΏΠΎΠΌΠ½ΠΈΡΡ, ΡΡΠΎ ΠΌΠ΅Π΄ΠΈΠ°Π½Π° ΠΊ Π³ΠΈΠΏΠΎΡΠ΅Π½ΡΠ·Π΅ ΡΠ°Π·Π±ΠΈΠ²Π°Π΅Ρ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊ Π½Π° Π΄Π²Π° ΡΠ°Π²Π½ΠΎΠ±Π΅Π΄ΡΠ΅Π½Π½ΡΡ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ°.
Π Π°Π΄ΠΈΡΡ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ, ΠΎΠΏΠΈΡΠ°Π½Π½ΠΎΠΉ ΠΎΠΊΠΎΠ»ΠΎ ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ΅ΡΠ³ΠΎΠ»ΡΠ½ΠΈΠΊΠ°, ΡΠ°Π²Π΅Π½ ΠΏΠΎΠ»ΠΎΠ²ΠΈΠ½Π΅ Π³ΠΈΠΏΠΎΡΠ΅Π½ΡΠ·Ρ
ΠΡΠΎ ΡΠ»Π΅Π΄ΡΠ΅Ρ ΠΈΠ· Π‘Π²ΠΎΠΉΡΡΠ²Π° 4, Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΠΎ, `MA = MB = MC`, ΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΡ Ρ ΡΠ΅Π½ΡΡΠΎΠΌ Π² ΡΠΎΡΠΊΠ΅ `M` ΠΈ ΡΠ°Π΄ΠΈΡΡΠ° `c/2` ΠΏΡΠΎΡ ΠΎΠ΄ΠΈΡ ΡΠ΅ΡΠ΅Π· ΡΡΠΈ Π²Π΅ΡΡΠΈΠ½Ρ.
Π‘ΡΠΌΠΌΠ° ΠΊΠ°ΡΠ΅ΡΠΎΠ² ΡΠ°Π²Π½Π° ΡΠ΄Π²ΠΎΠ΅Π½Π½ΠΎΠΉ ΡΡΠΌΠΌΠ΅ ΡΠ°Π΄ΠΈΡΡΠΎΠ² ΠΎΠΏΠΈΡΠ°Π½Π½ΠΎΠΉ ΠΈ Π²ΠΏΠΈΡΠ°Π½Π½ΠΎΠΉ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠ΅ΠΉ
`a + b = 2(R + r)` ΠΈΠ»ΠΈ `a + b = c + 2r`
Π Π°Π²Π΅Π½ΡΡΠ²Π°, Π΄ΠΎΠΊΠ°Π·Π°Π½Π½ΡΠ΅ Π² Π‘Π²ΠΎΠΉΡΡΠ²Π°Ρ 1 ΠΈ 2, Π·Π°ΠΏΠΈΡΡΠ²Π°ΡΡΡΡ ΡΠ°ΠΊΠΆΠ΅ ΠΊΠ°ΠΊ: