satisfactory топ альтернативных рецептов

Hard Drive/Alternate recipe analysis

satisfactory топ альтернативных рецептов. Смотреть фото satisfactory топ альтернативных рецептов. Смотреть картинку satisfactory топ альтернативных рецептов. Картинка про satisfactory топ альтернативных рецептов. Фото satisfactory топ альтернативных рецептовInformation in this article may be opinionated. This article is archived and no longer maintained.

Contents

Resource-efficient recipes [ ]

You should use these recipes when progressing towards the end game. These recipes are highly resource-efficient, they get the most product out of every single raw resource input. Or if not, they usually are to be used in conjunction with other alternative recipes to be useful as a ‘group’. Sometimes, these recipes can be very difficult to be set up due to their complexity, and usually, that also means you need to provide a strong power grid before using them. Besides that, you probably need a lot of building space.

Situationally useful, but not resource efficient recipes [ ]

You’re probably going to use a few of these recipes during the mid-game. They may provide a small boost or even slightly worse resource conversion ratio compared to the base recipe, but their recipe simplicity, space compactness, or power reduction can prove them to be useful to save you in certain situations.

Inefficient recipes [ ]

These recipes should generally be avoided as their disadvantages are greater than the advantages they provide, and they are not resource-efficient. They may still have good uses in niche situations, however.

Detailed analysis and powerful combinations [ ]

Diluted Packaged Fuel cycle [ ]

The Diluted Fuel recipe skips the packaging and unpackaging by mixing the Water and Heavy Oil Residue directly in a Blender, it is also more energy-efficient.

Recycled Plastic/Rubber [ ]

In addition to power generation, combining the above recipe with Recycled Plastic and Recycled Rubber will improve your ratio per crude oil. The idea is to have half the output of Recycled Plastic feeding the Recycled Rubber production, and vice versa. This does require the system to be «primed» which can be sped up by sending the full output of one side to the other initially. With the system equalized you can achieve 12 resources per crude oil ( [2.667 recycled plastic + 3.333 residual plastic] x 2 for the rubber ). The original recipes yield 0.667 resources per crude oil, plus the need to remove Heavy Oil Residue from the system for continuous production.

A major benefit of this recipe: If one resource of the combined recycler system is not fully utilized, the usable output of the other will increase as the unused side overflows. Thus, there is no need to build the system asymmetrically.

Nuclear Power [ ]

Uranium Fuel [ ]

The base conversion rate of Uranium to Uranium Fuel Rods is 100:1. Uranium Ore converts to Encased Uranium Cells at 2:1 and Encased Uranium Cells convert to Uranium Fuel Rods at 50:1. In total, this allows a single normal Uranium node (600/min using a Mk.3 Miner at 250%) to supply 30 Nuclear Power Plants, for a total of 75,000 MW of power. The alternate recipes Infused Uranium Cell and Uranium Fuel Unit drastically improve this ratio. Infused Uranium Cells convert Uranium ore to Encased Uranium Cells at a 5:4 ratio, and Uranium Fuel Unit converts Encased Uranium Cells to Uranium Fuel Rods at a 100:3 ratio. This increases the number of fuel rods generated by 2.4x, allowing a single normal Uranium node to supply 72 Nuclear Power Plants, for a total of 180,000 MW of power. This increases the maximum uranium power output from 262.5 GW to 630 GW (as of Update 4, there are 3 normal and 1 impure Uranium nodes on the map for a total of 2100 Uranium per minute).

Plutonium Fuel [ ]

The base conversion rate of Uranium Waste to Plutonium Fuel Rods is 225:1. The standard recipes for Non-fissile Uranium and Plutonium Pellets both consume Uranium Waste in a 3:1 ratio, meaning to fully convert all Uranium Waste, 75% should be allocated for Non-fissile Uranium and 25% should be allocated for Plutonium Pellets. Uranium Waste produces Non-fissile Uranium in a 3:4 ratio, Plutonium Pellets are produced in a 10:3 ratio (consuming 25% of the initial input Uranium Waste), Encased Plutonium Cells are produced in a 2:1 ratio, and Plutonium Fuel Rods are produced in a 30:1 ratio. When fully utilized, a single normal Uranium node produces between 300 Uranium Waste/min on the standard recipe chain or 720 Uranium Waste/min on the most efficient recipe chain, which respectively produce 1.5 and 3.6 Plutonium Fuel Rods/min.

The standard recipe chain maximizes the use of Uranium Waste and minimizes other resources required to create Plutonium Rods. This makes this recipe chain wideal for creating a zero-waste Nuclear Power setup (meaning all Plutonium Fuel Rods are deposited in an Awesome Sink and not used in Nuclear Power Plants). The alternate recipe chain for Plutonium Fuel is more oriented towards maximizing the production of Plutonium Fuel Rods.

Using all of the alternate recipes («Fertile Uranium», «Instant Plutonium», and «Plutonium Fuel Unit») the conversion rate of Uranium Waste to Plutonium Fuel Rods is 75:2. However, «Fertile Uranium» requires input Uranium, which means some of the original Uranium harvested must be withheld without being refined into Uranium Fuel Rods. This fact, along with the limited amount of Uranium available on the map currently, makes this recipe sub-optimal for maximizing power. Using all of the alternate recipes for Plutonium Fuel Rods and Uranium Fuel Rods, except for «Fertile Uranium» produces the most Uranium waste-free Nuclear power possible, at 340 GW for a single normal Uranium node (160 GW of additional power from Plutonium) or 1190 GW (630 GW from Uranium and 560 GW from Plutonium) for all of the Uranium on the map. This recipe chain has a conversion rate of Uranium Waste to Plutonium Fuel Rods of 225:2.

This is as compared to a maximum of 1050 GW (286.4 GW from Uranium and 763.6 GW from Plutonium) for all of the Uranium on the map if «Fertile Uranium» is used in combination with all other alternative recipes. Fertile Uranium also produces more permanent Plutonium Waste then the standard recipe.

Alloyed ingots [ ]

Using Iron Alloy Ingot and Copper Alloy Ingot together can yield significant increases in both for the same input. Normal smelting yields one Ingot per Ore input. Iron Alloy Ingot increases yield to 2.5 Ingots per one Iron Ore, at the cost of requiring an equal amount of Copper Ore. Copper Alloy Ingot increases the yield to two Ingots per one Copper Ore, at the cost of requiring half as much Iron Ore. If used together, the net number of Ingots is increased by 2-2.5x, depending on ratios of usage between the two recipes.

Pure Iron Ingot and Pure Copper Ingot are still significantly better than these, if refineries are unlocked.

Solid Steel Ingots [ ]

Using the normal recipe, one Steel Ingot is produced per Iron Ore and Coal input. Using Solid Steel Ingot combined with Pure Iron Ingot can increase this yield to 39 Steel Ingots for 14 Iron Ore and 26 Coal input. This is 2.79x as efficient with regards to Iron Ore, and 1.5x as efficient with regards to Coal.

Compacted Steel Ingot combined with Compacted Coal can be used instead to ease the demand on Coal at the cost of overall yield (relative to the Solid Steel Ingot recipe) and Sulfur. It provides 10 Steel Ingots for six Iron Ore, three Coal, and three Sulfur. Relative to the normal Steel Ingot recipe, this is 1.67x as efficient on Iron Ore, and 3.33x as efficient on Coal. Relative to the Solid Steel Ingot recipe, this produces only

60% as many Steel Ingots per Iron Ore input, but requires only 45% as much Coal *per Ingot* (at the cost of requiring an equal amount of Sulfur).

Iron Wire [ ]

Best paired with Stitched Iron Plate and default Beacon recipes to see its usefulness.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *