как доказать что прямая и плоскость параллельны
Параллельные прямая и плоскость, признак и условия параллельности прямой и плоскости.
В этой статье всесторонне раскрыта тема «параллельность прямой и плоскости». Сначала дано определение параллельных прямой и плоскости, приведена графическая иллюстрация и пример. Далее сформулирован признак параллельности прямой и плоскости, а также озвучены необходимые и достаточные условия параллельности прямой и плоскости. В заключении приведены развернутые решения задач, в которых доказывается параллельность прямой и плоскости.
Навигация по странице.
Параллельные прямая и плоскость – основные сведения.
Начнем с определения параллельных прямой и плоскости.
Прямая и плоскость называются параллельными, если они не имеют общих точек.
Для обозначения параллельности используется символ «». То есть, если прямая a и плоскость параллельны, то можно кратко записать a .
Заметим, что выражения «прямая a и плоскость параллельны», «прямая a параллельна плоскости » и «плоскость параллельна прямой a » одинаково употребимы.
В качестве примера параллельных прямой и плоскости приведем натянутую гитарную струну и плоскость грифа этой гитары.
Параллельность прямой и плоскости далеко не всегда является очевидным фактом. Другими словами, параллельность прямой и плоскости приходится доказывать. Существует достаточное условие, выполнение которого гарантирует параллельность прямой и плоскости. Это условие называют признаком параллельности прямой и плоскости. Прежде чем ознакомиться с формулировкой этого признака, рекомендуем повторить определение параллельных прямых.
Озвучим еще одну теорему, которую можно использовать для установления параллельности прямой и плоскости.
Если одна из двух параллельных прямых параллельна некоторой плоскости, то вторая прямая либо также параллельна этой плоскости, либо лежит в ней.
Определение направляющего вектора прямой и определение нормального вектора плоскости позволяют записать необходимое и достаточное условие параллельности прямой и плоскости.
Это условие удобно использовать для доказательства параллельности прямой и плоскости, которые заданы в прямоугольной системе координат в трехмерном пространстве некоторыми уравнениями.
Разберем решения нескольких примеров.
Являются ли прямая и плоскость параллельными?
Заданная прямая не лежит в плоскости, так как координаты точки прямой не удовлетворяют уравнению плоскости: . Проверим выполнение необходимого и достаточного условия параллельности прямой и плоскости. Очевидно, — направляющий вектор прямой , — нормальный вектор плоскости . Вычислим скалярное произведение векторов и : . Таким образом, векторы и перпендикулярны. Следовательно, заданные прямая и плоскость параллельны.
да, прямая и плоскость параллельны.
Нормальным вектором плоскости Oyz является вектор . В качестве направляющего вектора прямой AB возьмем вектор . Координаты точек начала и конца вектора позволяют вычислить координаты этого вектора, тогда . Проверим выполнение необходимого и достаточного условия перпендикулярности векторов и : . Следовательно, прямая AB и координатная плоскость Oyz не параллельны.
нет, не параллельны.
Разобранное условие не совсем удобно для доказательства параллельности прямой a и плоскости , так как отдельно приходится проверять, что прямая a не лежит в плоскости . Поэтому, доказывать параллельность прямой a и плоскости удобнее с помощью следующего необходимого и достаточного условия.
Пусть прямая a задана уравнениями двух пересекающихся плоскостей ,
а плоскость — общим уравнением плоскости .
Для параллельности прямой a и плоскости необходимо и достаточно, чтобы система линейных уравнений вида не имела решений.
В свою очередь система уравнений не имеет решений, когда ранг основной матрицы системы меньше ранга расширенной матрицы (это следует из теоремы Кронекера-Капелли, при необходимости смотрите статью решение систем линейных уравнений). Несовместность этой системы уравнений можно также показать, используя метод Гаусса для решения систем линейных уравнений.
Докажите параллельность прямой и плоскости .
Перейдем от канонических уравнений прямой к уравнениям двух пересекающихся плоскостей:
Для доказательства параллельности прямой и плоскости покажем, что система уравнений не имеет решения. Воспользуемся методом Гаусса:
Действительно, система уравнений несовместна, следовательно, заданные прямая и плоскость не имеют общих точек. Этим доказана параллельность прямой и плоскости .
Параллельные прямая и плоскость, признак и условия параллельности прямой и плоскости
Статья рассматривает понятия параллельность прямой и плоскости. Будут рассмотрены основные определения и приведены примеры. Рассмотрим признак параллельности прямой к плоскости с необходимыми и достаточными условиями параллельности, подробно решим примеры заданий.
Параллельные прямые и плоскость – основные сведения
Прямая и плоскость называются параллельными, если не имеют общих точек, то есть не пересекаются.
Параллельность прямой и плоскости – признак и условия параллельности
Не всегда очевидно, что прямая и плоскость параллельны. Зачастую это нужно доказать. Необходимо использовать достаточное условие, которое даст гарантию на параллельность. Такой признак имеет название признака параллельности прямой и плоскости. Предварительно рекомендуется изучить определение параллельных прямых.
Рассмотрим теорему, используемую для установки параллельности прямой с плоскостью.
Если одна из двух параллельных прямых параллельна плоскости, то другая прямая лежит в этой плоскости либо параллельна ей.
Условие применимо, когда необходимо доказать параллельность в прямоугольной системе координат трехмерного пространства. Рассмотрим подробное доказательство.
Значит, перпендикулярность векторов a → и n → очевидна. Отсюда следует, что прямая с плоскостью являются параллельными.
Ответ: прямая с плоскостью параллельны.
Отсюда следует, что прямая А В с координатной плоскостью О y z не являются параллельными.
Ответ: не параллельны.
Из определения следует, что прямая a с плоскостью α не должна иметь общих точек, то есть не пересекаться, только в этом случае они будут считаться параллельными. Значит, система координат О х у z не должна иметь точек, принадлежащих ей и удовлетворяющих всем уравнениям:
Система уравнений A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 2 = 0 A x + B y + C z + D = 0 не имеет решения, когда ранг основной матрицы меньше ранга расширенной. Это проверяется теоремой Кронекера-Капелли для решения линейных уравнений. Можно применять метод Гаусса для определения ее несовместимости.
Для решения данного примера следует переходить от канонического уравнения прямой к виду уравнения двух пересекающихся плоскостей. Запишем это так:
Видим, что она не решаема, значит прибегнем к методу Гаусса.
Отсюда делаем вывод, что система уравнений является несовместной, так как прямая и плоскость не пересекаются, то есть не имеют общих точек.
Ответ: прямая и плоскость параллельны.
Введение в стереометрию. Параллельность
Важные аксиомы стереометрии
1. Через любые три точки, не лежащие на одной прямой, проходит плоскость, и притом только одна.
Таким образом, любая плоскость однозначно задается тремя точками, не лежащими на одной прямой: \(\pi=(ABC)\) (рис. 1).
Заметим, что плоскость обычно изображают в виде внутренности параллелограмма. Почему? Посмотрите, например, сбоку на стол. В виде какой фигуры выглядит столешница?
Следствия из аксиом
1. Через прямую и не лежащую на ней точку проходит плоскость, и притом только одна (рис. 4).
2. Через две пересекающиеся прямые проходит плоскость, и притом только одна (рис. 5).
Доказательство
Определения
Две прямые в пространстве параллельны, если они лежат в одной плоскости и не пересекаются.
Следствие 1
Через две параллельные прямые проходит плоскость, и притом только одна.
Теорема 1
Доказательство
Теорема 2
Если одна из двух параллельных прямых пересекает плоскость, то и другая прямая пересекает эту плоскость.
Доказательство
Теорема 3: о параллельности трех прямых
Доказательство
Определение
Существует три вида взаимного расположения прямой и плоскости:
1. прямая имеет с плоскостью две общие точки (то есть лежит в плоскости) — рис. 4;
2. прямая имеет с плоскостью ровно одну общую точку (то есть пересекает плоскость) — рис. 6;
3. прямая не имеет с плоскостью общих точек (то есть параллельна плоскости).
Теорема 4: признак параллельности прямой и плоскости
Доказательство
Следствие 2
Доказательство
Следствие 3
Определение
Существует три типа взаимного расположения плоскостей в пространстве: совпадают (имеют три общие точки, не лежащие на одной прямой), пересекаются (имеют общие точки, лежащие строго на одной прямой), и не имеют общих точек.
Если две плоскости не имеют общих точек, то они называются параллельными плоскостями.
Теорема 5: признак параллельности плоскостей
Если две пересекающиеся прямых из одной плоскости параллельны двум пересекающимся прямым из другой плоскости, то такие плоскости будут параллельны.
Доказательство
Следствие 4
\[\alpha\parallel \beta, \ \alpha\cap \gamma=a, \ \beta\cap\gamma=b \Longrightarrow a\parallel b\]
Следствие 5
Отрезки параллельных прямых, заключенные между параллельными плоскостями, равны:
\[\alpha\parallel \beta, \ a\parallel b \Longrightarrow A_1B_1=A_2B_2\]
Параллельность прямой и плоскости
Урок 6. Геометрия 10 класс ФГОС
В данный момент вы не можете посмотреть или раздать видеоурок ученикам
Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.
Получите невероятные возможности
Конспект урока «Параллельность прямой и плоскости»
· рассмотрим параллельность прямой и плоскости, как один из трех возможных вариантов их взаимного расположения в пространстве;
· сформулируем и докажем теорему о параллельности прямой и плоскости;
· докажем еще два утверждения, которые часто применяют при решении задач.
Раньше мы с вами уже узнали аксиомы стереометрии. На этом уроке нам понадобится вторая аксиома: если две точки прямой принадлежат плоскости, то и вся прямая принадлежит плоскости.
Отсюда вытекают три случая взаимного расположения прямой и плоскости в пространстве.
Первый случай. Прямая лежит в плоскости, т.е. каждая точка прямой лежит в плоскости. Например, если SABC – треугольная пирамида, то прямая CB лежит в плоскости ABC.
Второй случай. Прямая и плоскость пересекаются, т.е. имеют только одну общую точку. Например, прямая B1B пересекается с плоскостью грани ABCD параллелепипеда ABCDA1B1C1D1.
И третий случай. Прямая и плоскость не имеют ни одной общей точки. Например, если ABCDA1B1C1D1– куб, то прямая A1D1 и плоскость, в которой лежит грань ABCD, не пересекаются.
Определение. Прямая и плоскость называются параллельными, если они не имеют общих точек.
Параллельность прямой а и плоскости α обозначается следующим образом . Читают: «Прямая a параллельна плоскости α».
Отрезок (луч) называется параллельным плоскости, если он лежит на прямой, параллельной данной плоскости.
Приведем несколько примеров параллельности прямой и плоскости.
Вот возьмем, к примеру, гитару. Натянутая гитарная струна и плоскость грифа параллельны. Линии электропередач параллельны плоскости земли.
Еще примером может послужить линия пересечения стены и потолка. Эта линия параллельна плоскости пола.
Обратите внимание, в плоскости пола также есть прямая, параллельная этой линии. Такой прямой является, например, линия пересечения пола с той же самой стеной.
Прямые о которых мы сейчас говорили, обозначены буквами а и b. Оказывается, что если в плоскости α имеется прямая b, параллельная прямой а, не лежащая в плоскости α, то прямая а и плоскость α параллельны.
Это утверждение (теорема) является признаком, по которому можно сделать вывод о параллельности прямой а и плоскости α.
Теорема. Если прямая, не лежащая в данной плоскости, параллельна какой-нибудь прямой, лежащей в этой плоскости, то она параллельна данной плоскости.
Докажем теорему. Пусть у нас есть две параллельные прямые а и b и плоскость α. Причем они расположены так, что прямая b лежит в плоскости α, а прямая а не лежит в этой плоскости. Докажем, что прямая а параллельна плоскости α.
Предположим, что прямая а пересекает плоскость α в некоторой точке М. А значит, по лемме о пересечении плоскости параллельными прямыми прямая b также должна пересекать плоскость α. Но это невозможно, так как прямая b лежит в плоскости α по условию. Таким образом, наше предположение неверно. И прямая а не пересекает плоскость α. По условию она не лежит в плоскости α. Следовательно, прямая а параллельна плоскости α. Теорема доказана.
На рисунке изображен параллелепипед ABCDA1B1C1D1. Прямая A1B1 параллельна плоскости α, в которой лежит грань ABCD. Действительно, прямая A1B1 параллельна прямой AB, лежащей в плоскости α. Следовательно, по признаку параллельности прямой и плоскости A1B1 параллельна α.
Докажем еще два утверждения, которые часто применяются при решении задач.
Первое утверждение. Если плоскость проходит через данную прямую, параллельную другой плоскости, и пересекает эту плоскость, то линия пересечения плоскостей параллельна данной прямой.
Докажем это утверждение. Пусть плоскость α проходит через прямую а, параллельную плоскости β. И плоскости α и β пересекаются по прямой b. Докажем, что прямая а параллельна прямой b.
Действительно, эти прямые лежат в одной плоскости (в плоскости α) и не пересекаются: ведь в противном случае, если бы прямые а и b пересекались в некоторой точке М, тогда бы прямая а пересекала плоскость β в точке М. Что невозможно, поскольку прямая а параллельна плоскости β по условию.
Таким образом, прямые а и b параллельны. Что и требовалось доказать.
Второе утверждение. Если одна из двух параллельных прямых параллельна данной плоскости, то другая прямая либо также параллельна данной плоскости, либо лежит в этой плоскости.
Доказательство. Пусть прямые а и b параллельны. Причем прямая а параллельна плоскости α. Тогда прямая а не пересекает плоскость α, и, следовательно, по лемме о пересечении плоскости параллельными прямыми прямая b также не пересекает плоскость α. А значит, прямая b либо параллельна плоскости α, либо лежит в этой плоскости. Что и требовалось доказать.
Задача. Прямая . Точка . Докажите, что прямая, проходящая через точку и параллельная прямой , лежит в .
Доказательство. Пусть прямая b проходит через точку K и параллельна прямой а.
Предположим, что прямая b не лежит в плоскости α, т.е. пересекает плоскость α в точке К. Тогда прямая а также пересекает плоскость α по лемме о пересечении плоскости параллельными прямыми. А это противоречит условию. Следовательно, прямая b лежит в плоскости α. Что и требовалось доказать.
Подведем итоги урока. На этом уроке мы рассмотрели параллельность прямой и плоскости, как один из трех возможных вариантов их взаимного расположения в пространстве. Сформулировали и доказали признак параллельности прямой и плоскости. А также доказали два утверждения, которые часто применяют при решении задач.